An Lp-theory for fractional stationary Navier-Stokes equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

An Lp-theory for fractional stationary Navier-Stokes equations

Résumé

We consider the stationary (time-independent) Navier-Stokes equations in the whole threedimensional space, under the action of a source term and with the fractional Laplacian operator (−∆) α/2 in the diffusion term. In the framework of Lebesgue and Lorentz spaces, we find some natural sufficient conditions on the external force and on the parameter α to prove the existence and in some cases nonexistence of solutions. Secondly, we obtain sharp pointwise decaying rates and asymptotic profiles of solutions, which strongly depend on α. Finally, we also prove the global regularity of solutions. As a bi-product, we obtain some uniqueness theorems so-called Liouville-type results. On the other hand, our regularity result yields a new regularity criterion for the classical ( i.e. with α = 2) stationary Navier-Stokes equations. Contents
Fichier principal
Vignette du fichier
Lp-frac-NS-V2.pdf (428.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04244741 , version 1 (16-10-2023)
hal-04244741 , version 2 (17-10-2023)
hal-04244741 , version 3 (10-05-2024)

Identifiants

Citer

Oscar Jarrín, Gastón Vergara-Hermosilla. An Lp-theory for fractional stationary Navier-Stokes equations. 2024. ⟨hal-04244741v3⟩
57 Consultations
50 Téléchargements

Altmetric

Partager

More