Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery - Archive ouverte HAL
Communication Dans Un Congrès Année : 2011

Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery

Résumé

This paper studies a hierarchical Bayesian model for nonlinear hyperspectral image unmixing. The proposed model assumes that the pixel reflectances are polynomial functions of linear mixtures of pure spectral components contaminated by an additive white Gaussian noise. The parameters involved in this model satisfy constraints that are naturally expressed within a Bayesian framework. A Gibbs sampler allows one to sample the unknown abundances and nonlinearity parameters according to the joint posterior of interest. The performance of the resulting unmixing strategy is evaluated thanks to simulations conducted on synthetic and real data.
Fichier non déposé

Dates et versions

hal-04241308 , version 1 (13-10-2023)

Identifiants

Citer

Yoann Altmann, Abderrahim Halimi, Nicolas Dobigeon, Jean-Yves Tourneret. Supervised nonlinear spectral unmixing using a polynomial post nonlinear model for hyperspectral imagery. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2011), IEEE, May 2011, Prague, Czech Republic. pp.1009--1012, ⟨10.1109/ICASSP.2011.5946577⟩. ⟨hal-04241308⟩
25 Consultations
0 Téléchargements

Altmetric

Partager

More