A wideband sub-6GHz continuously tunable gm-boosted CG Low Noise Amplifier in 28 nm FD-SOI CMOS technology
Résumé
This paper presents the design of a tunable multimode inductorless Low Noise Amplifier (LNA) based on an active gm−boosting Common Gate (CG) architecture. The tunability is achieved through a discrete coarse mode selection followed by a continuous fine-tuning thanks to the back gate of the Fully-Depleted Silicon-On-Insulator (FD-SOI) technology. It demonstrates the capability offered by the body bias to implement finely tunable architectures. The proposed LNA targets the Long-Term Evolution for machines (LTE-M) and Narrowband IoT (NB-IoT) cellular standards. It has been implemented in STMicroelectronics 28 nm FD-SOI Technology with an active area of 0.0059 mm2. The measured performance exhibits more than 30 dB voltage Gain with 20 dB of dynamic over the implemented modes. The noise figure (NF) ranges from 1.8 dB to 7 dB while the Input referred third-order Intercept Point (IIP 3 ) ranges from -24.5dBm to -6.5dBm depending on the selected mode. The maximal power consumption is 1.86 mW from a 0.9 V supply. The LNA performances are fine-tuned across the modes achieving a large coverage of the design space.
Origine | Fichiers produits par l'(les) auteur(s) |
---|