Spectral inequality for Schrödinger's equation with multipoint potential
Résumé
Schrödinger's equation with potential that is a sum of a regular function and a finite set of point scatterers of Bethe–Peierls type is under consideration. For this equation the spectral problem with homogeneous linear boundary conditions is considered, which covers the Dirichlet, Neumann, and Robin cases. It is shown that when the energy E is an eigenvalue with multiplicity m, it remains an eigenvalue with multiplicity at least m−n after adding n
Roman Novikov : Connectez-vous pour contacter le contributeur
https://hal.science/hal-04240822
Soumis le : vendredi 13 octobre 2023-12:35:20
Dernière modification le : mardi 3 décembre 2024-15:14:03
Citer
Piotr Grinevich, Roman Novikov. Spectral inequality for Schrödinger's equation with multipoint potential. Russian Mathematical Surveys, 2022, 77 (6), pp.1021-1028. ⟨10.4213/rm10080e⟩. ⟨hal-04240822⟩
20
Consultations
0
Téléchargements