Speech Emotion Classification from Affective Dimensions: Limitation and Advantage - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Speech Emotion Classification from Affective Dimensions: Limitation and Advantage

Résumé

In affective computing, two main paradigms are used to represent emotion: categorical representation and dimensional description in continuous space. Therefore, the emotion recognition task can be treated as a classification or regression. The main aim of this study is to investigate the relation between these two representations and propose a classification pipeline that uses only dimensional annotation. Our approach contains a neural regressor which predicts a vector of arousal, valence and dominance values for a given speech segment. This vector can be interpreted as an emotional category using a mapping algorithm. We investigate the performances of a neural network architectures, and three mapping algorithms on two corpora. Our study shows the limitation and an advantage of the emotion classification via regression approach.
Fichier principal
Vignette du fichier
ACIIW2023_59127_Camera_Ready_LaTeX_Template (1).pdf (89.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04239244 , version 1 (18-10-2023)

Identifiants

Citer

Meysam Shamsi. Speech Emotion Classification from Affective Dimensions: Limitation and Advantage. 11th International Conference on Affective Computing and Intelligent Interaction (ACII), MIT Media Lab, Jul 2023, Cambridge Massachusetts, USA, France. pp.1-4, ⟨10.1109/ACIIW59127.2023.10388084⟩. ⟨hal-04239244⟩
58 Consultations
125 Téléchargements

Altmetric

Partager

More