Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural network - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural network

Résumé

The reduction of Hamiltonian systems aims to build smaller reduced models, valid over a certain range of time and parameters, in order to reduce computing time. By maintaining the Hamiltonian structure in the reduced model, certain long-term stability properties can be preserved. In this paper, we propose a non-linear reduction method for models coming from the spatial discretization of partial differential equations: it is based on convolutional auto-encoders and Hamiltonian neural networks. Their training is coupled in order to simultaneously learn the encoder-decoder operators and the reduced dynamics. Several test cases on non-linear wave dynamics show that the method has better reduction properties than standard linear Hamiltonian reduction methods.
Fichier principal
Vignette du fichier
Grid_HNN.pdf (3.9 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04237799 , version 1 (11-10-2023)
hal-04237799 , version 2 (10-11-2023)
hal-04237799 , version 3 (16-09-2024)

Identifiants

  • HAL Id : hal-04237799 , version 3

Citer

Raphaël Côte, Emmanuel Franck, Laurent Navoret, Guillaume Steimer, Vincent Vigon. Hamiltonian reduction using a convolutional auto-encoder coupled to an Hamiltonian neural network. 2024. ⟨hal-04237799v3⟩
126 Consultations
127 Téléchargements

Partager

More