Robust Identification in the Limit from Incomplete Positive Data - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Robust Identification in the Limit from Incomplete Positive Data

Résumé

Intuitively, a learning algorithm is robust if it can succeed despite adverse conditions. We examine conditions under which learning algorithms for classes of formal languages are able to succeed when the data presentations are systematically incomplete; that is, when certain kinds of examples are systematically absent. One motivation comes from linguistics, where the phonotactic pattern of a language may be understood as the intersection of formal languages, each of which formalizes a distinct linguistic generalization. We examine under what conditions these generalizations can be learned when the only data available to a learner belongs to their intersection. In particular, we provide three formal definitions of robustness in the identification in the limit from positive data paradigm, and several theorems which describe the kinds of classes of formal languages which are, and are not, robustly learnable in the relevant sense. We relate these results to classes relevant to natural language phonology.
Fichier principal
Vignette du fichier
main.pdf (351.04 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04237264 , version 1 (11-10-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Philip Kaelbling, Dakotah Lambert, Jeffrey Heinz. Robust Identification in the Limit from Incomplete Positive Data. 24th International Symposium Fundamentals of Computation Theory, Henning Fernau; Philipp Kindermann; Zhidan Feng; Kevin Mann, Sep 2023, Trier, Germany. pp.276-290, ⟨10.1007/978-3-031-43587-4_20⟩. ⟨hal-04237264⟩
16 Consultations
48 Téléchargements

Altmetric

Partager

More