Harmful Insects Detection Using Convolutional Neural Networks (Faster R-CNN) * - Archive ouverte HAL
Article Dans Une Revue Entomologie faunistique - Faunistic Entomology Année : 2023

Harmful Insects Detection Using Convolutional Neural Networks (Faster R-CNN) *

Abderrahim Akarid
  • Fonction : Auteur
  • PersonId : 1287772
Samir El Adib
  • Fonction : Collaborateur
  • PersonId : 1291406
Naoufal Raissouni
  • Fonction : Collaborateur
  • PersonId : 1128615

Résumé

Insect detection is a crucial task in various fields, including agriculture, entomology, and biodiversity conservation. Among the problems we encountered was the difficulty of identifying insects due to the great similarity of appearance of certain species. Currently, the Convolutional Neural Networks (CNNs) have been widely adopted for insect detection due to their ability to accurately classify objects in images, using recent advances methods in deep learning and computer vision algorithms. In this paper, we focused only on seven types of insects most harmful to agricultural crops in Morocco, such as olive and wheat… We propose a CNNbased architecture specifically Faster RCNN to processing our model. The purpose of this research is to determine the type of insect and monitor it, which can allow us to identify and reduce the chemical pesticides used but also to take timely preventive measures and avoid economic losses.
Fichier principal
Vignette du fichier
Harmful Insects Detection Using Convolutional Neural Networks (Faster R-CNN).pdf (632.36 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04232491 , version 1 (08-10-2023)

Identifiants

  • HAL Id : hal-04232491 , version 1

Citer

Abderrahim Akarid, Samir El Adib, Naoufal Raissouni. Harmful Insects Detection Using Convolutional Neural Networks (Faster R-CNN) *. Entomologie faunistique - Faunistic Entomology, In press. ⟨hal-04232491⟩

Collections

IP_PARIS
134 Consultations
64 Téléchargements

Partager

More