Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19
Résumé
The emergence of the SARS-CoV-2 virus and new viral variations with higher transmission and mortality rates have highlighted the urgency to accelerate vaccination to mitigate the morbidity and mortality of the COVID-19 pandemic. For this purpose, this paper formulates a new multi-vaccine, multi-depot location-inventory-routing problem for vaccine distribution. The proposed model addresses a wide variety of vaccination concerns: prioritizing age groups, fair distribution, multi-dose injection, dynamic demand, etc. To solve large-size instances of the model, we employ a Benders decomposition algorithm with a number of acceleration techniques. To monitor the dynamic demand of vaccines, we propose a new adjusted susceptible-infectious-recovered (SIR) epidemiological model, where infected individuals are tested and quarantined. The solution to the optimal control problem dynamically allocates the vaccine demand to reach the endemic equilibrium point. Finally, to illustrate the applicability and performance of the proposed model and solution approach, the paper reports extensive numerical experiments on a real case study of the vaccination campaign in France. The computational results show that the proposed Benders decomposition algorithm is 12 times faster, and its solutions are, on average, 16% better in terms of quality than the Gurobi solver under a limited CPU time. In terms of vaccination strategies, our results suggest that delaying the recommended time interval between doses of injection by a factor of 1.5 reduces the unmet demand up to 50%. Furthermore, we observed that the mortality is a convex function of fairness and an appropriate level of fairness should be adapted through the vaccination
Origine | Publication financée par une institution |
---|---|
Licence |