Non-stationary data segmentation with hidden evidential semi-Markov chains - Archive ouverte HAL
Article Dans Une Revue (Data Paper) International Journal of Approximate Reasoning Année : 2023

Non-stationary data segmentation with hidden evidential semi-Markov chains

Résumé

Hidden Markov chains (HMCs) are widely used in unsupervised Bayesian hidden discrete data restoration. They are very robust and, in spite of their simplicity, they are sufficiently efficient in many cases. However, in complex situations, extensions of HMCs models are of interest. In particular, when sojourn time in hidden states is not geometrical, hidden semi-Markov chains (HSMCs) may work better. Besides, hidden evidential Markov chains (HEMCs) showed its interest in non-stationary situations. In this paper, we propose a new model simultaneously extending HSMCs and HEMCs. Based on triplet Markov chains (TMCs), it is used in an unsupervised framework, parameters being estimated with the Expectation-Maximization (EM) algorithm. We validate its interest through some experiments on hand-drawn images noised with artificial noises.
Fichier principal
Vignette du fichier
A88bis.pdf (971.15 Ko) Télécharger le fichier
A88bis (1).pdf (971.15 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04231954 , version 1 (11-02-2024)

Identifiants

Citer

Clément Fernandes, Wojciech Pieczynski. Non-stationary data segmentation with hidden evidential semi-Markov chains. International Journal of Approximate Reasoning, 2023, 162, pp.109025. ⟨10.1016/j.ijar.2023.109025⟩. ⟨hal-04231954⟩
34 Consultations
50 Téléchargements

Altmetric

Partager

More