Metamodel-Based Electric Vehicle Powertrain Optimization : A Drive Cycle Approach - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Metamodel-Based Electric Vehicle Powertrain Optimization : A Drive Cycle Approach

Résumé

Components selection and mutualizing for different segments are needed to improve electric vehicle powertrains and limit costs. This paper proposes a first accelerated approach to model and design the electric vehicle powertrain. The optimization scope includes relevant electric powertrain components such as the inverter, the electrical machine, and the reducer. This methodology applies metamodeling techniques for estimating losses in the machine and analytical models for calculating the inverter and the reducer power losses. The driving cycle is considered through the k-means method to reduce the number of operating points considered. The multi-objective optimization is applied to a case study for the WLTC drive cycle and multiple component combinations to investigate modularity.
Fichier principal
Vignette du fichier
Metamodel-Based_Electric_Vehicle_Powertrain_Optimization__A_Drive_Cycle_Approach.pdf (1.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04230379 , version 1 (05-10-2023)

Identifiants

Citer

Claude Marchand, Mehdi Djami, Maya Hage-Hassan, Guillaume Krebs, Philippe Dessante, et al.. Metamodel-Based Electric Vehicle Powertrain Optimization : A Drive Cycle Approach. 2023 IEEE International Electric Machines & Drives Conference (IEMDC), May 2023, San Francisco, United States. pp.1-5, ⟨10.1109/IEMDC55163.2023.10238941⟩. ⟨hal-04230379⟩
49 Consultations
161 Téléchargements

Altmetric

Partager

More