Schrödinger equation driven by the square of a Gaussian field: instanton analysis in the large amplification limit - Archive ouverte HAL
Article Dans Une Revue Journal of Physics A: Mathematical and Theoretical Année : 2023

Schrödinger equation driven by the square of a Gaussian field: instanton analysis in the large amplification limit

Philippe Mounaix
  • Fonction : Auteur
  • PersonId : 1078629

Résumé

We study the tail of p ( U ), the probability distribution of U = | ψ ( 0 , L ) | 2 , for ln U ≫ 1 , ψ ( x , z ) being the solution to ∂ z ψ − i 2 m ∇ ⊥ 2 ψ = g | S | 2 ψ , where S ( x , z ) is a complex Gaussian random field, z and x respectively are the axial and transverse coordinates, with 0 ⩽ z ⩽ L , and both m ≠ 0 and g > 0 are real parameters. We perform the first instanton analysis of the corresponding Martin-Siggia-Rose action, from which it is found that the realizations of S concentrate onto long filamentary instantons, as ln U → + ∞ . The tail of p ( U ) is deduced from the statistics of the instantons. The value of g above which ⟨ U ⟩ diverges coincides with the one obtained by the completely different approach developed in Mounaix et al (2006 Commun. Math. Phys. 264 741). Numerical simulations clearly show a statistical bias of S towards the instanton for the largest sampled values of ln U . The high maxima—or ‘hot spots’—of | S ( x , z ) | 2 for the biased realizations of S tend to cluster in the instanton region.
Fichier principal
Vignette du fichier
https:arxiv.org:pdf:2301.13000.pdf (8.65 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04225842 , version 1 (03-10-2023)

Identifiants

Citer

Philippe Mounaix. Schrödinger equation driven by the square of a Gaussian field: instanton analysis in the large amplification limit. Journal of Physics A: Mathematical and Theoretical, 2023, 56 (30), pp.305001. ⟨10.1088/1751-8121/ace0e8⟩. ⟨hal-04225842⟩
22 Consultations
22 Téléchargements

Altmetric

Partager

More