Lower bounds on the maximal number of rational points on curves over finite fields - Archive ouverte HAL
Article Dans Une Revue Mathematical Proceedings of the Cambridge Philosophical Society Année : 2024

Lower bounds on the maximal number of rational points on curves over finite fields

Résumé

Abstract For a given genus $g \geq 1$ , we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over $\mathbb{F}_q$ . As a consequence of Katz–Sarnak theory, we first get for any given $g>0$ , any $\varepsilon>0$ and all q large enough, the existence of a curve of genus g over $\mathbb{F}_q$ with at least $1+q+ (2g-\varepsilon) \sqrt{q}$ rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form $1+q+1.71 \sqrt{q}$ valid for $g \geq 3$ and odd $q \geq 11$ . Finally, explicit constructions of towers of curves improve this result: We show that the bound $1+q+4 \sqrt{q} -32$ is valid for all $g\ge 2$ and for all q .
Fichier principal
Vignette du fichier
lower-bounds-on-the-maximal-number-of-rational-points-on-curves-over-finite-fields.pdf (226.06 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Licence

Dates et versions

hal-04221916 , version 1 (16-09-2024)

Licence

Identifiants

Citer

Jonas Bergström, Everett Howe, Elisa Lorenzo García, Christophe Ritzenthaler. Lower bounds on the maximal number of rational points on curves over finite fields. Mathematical Proceedings of the Cambridge Philosophical Society, 2024, 176 (1), pp.213-238. ⟨10.1017/S0305004123000476⟩. ⟨hal-04221916⟩
94 Consultations
11 Téléchargements

Altmetric

Partager

More