Lower bounds on the maximal number of rational points on curves over finite fields
Résumé
Abstract For a given genus $g \geq 1$ , we give lower bounds for the maximal number of rational points on a smooth projective absolutely irreducible curve of genus g over $\mathbb{F}_q$ . As a consequence of Katz–Sarnak theory, we first get for any given $g>0$ , any $\varepsilon>0$ and all q large enough, the existence of a curve of genus g over $\mathbb{F}_q$ with at least $1+q+ (2g-\varepsilon) \sqrt{q}$ rational points. Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower bound of the form $1+q+1.71 \sqrt{q}$ valid for $g \geq 3$ and odd $q \geq 11$ . Finally, explicit constructions of towers of curves improve this result: We show that the bound $1+q+4 \sqrt{q} -32$ is valid for all $g\ge 2$ and for all q .
Domaines
Mathématiques [math]
Fichier principal
lower-bounds-on-the-maximal-number-of-rational-points-on-curves-over-finite-fields.pdf (226.06 Ko)
Télécharger le fichier
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |