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Abstract

For a given genus g ≥ 1, we give lower bounds for the maximal number of rational points
on a smooth projective absolutely irreducible curve of genus g over Fq. As a consequence
of Katz–Sarnak theory, we first get for any given g> 0, any ε > 0 and all q large enough,
the existence of a curve of genus g over Fq with at least 1 + q + (2g − ε)

√
q rational points.

Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lower
bound of the form 1 + q + 1.71

√
q valid for g ≥ 3 and odd q ≥ 11. Finally, explicit construc-

tions of towers of curves improve this result: We show that the bound 1 + q + 4
√

q − 32 is
valid for all g ≥ 2 and for all q.

2020 Mathematics Subject Classification: 11G20 (Primary); 14H25, 14H30,
11R45 (Secondary)

1. Introduction

Researchers who study Nq(g), the maximal number of rational points on curves
1

of genus
g over a finite field Fq, generally follow the lead of Serre’s 1985 Harvard lectures [Ser20]
and focus on two cases: one in which q is fixed and the genus goes to infinity, and one in
which g is fixed and q varies. In the first case, a great number of results have been achieved

1 Throughout this paper, the word ‘curve’ will always mean a projective, absolutely irreducible, smooth
variety of dimension 1.
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214 BERGSTRÖM, HOWE, LORENZO GARCÍA AND RITZENTHALER

that control the asymptotic behaviour of the ratio Nq(g)/g; see [Bee22] and the references
there. In the second case, while a closed formula is known for Nq(0), Nq(1) [Deu41] and
Nq(2) [Ser83], the exact nature of the growth of Nq(g) for fixed q remains open in general.
One of the tantalising challenges already proposed in [Ser20, section 4·3] is to determine
whether for every g, the value Nq(g) remains at a bounded distance from the Hasse–Weil
bound 1 + q + 2g

√
q for all q, as is the case for g = 0, 1 and 2. It is hard even to get good

heuristics for this question (see our attempt in Remark 2·5), and in a recent personal commu-
nication J-P. Serre raised a less ambitious question: is it possible to give for each g a positive
constant c such that for all sufficiently large q, we have Nq(g) ≥ 1 + q + c

√
q ? In this paper

we provide several methods that lead to a positive answer to the question, even when we
limit our consideration to hyperelliptic curves.

Serre not only asked this question but also suggested that it might be answered through the
consideration of the (weighted) sum Sn(q, Hg) of the nth powers of the traces of Frobenius
of genus-g hyperelliptic curves over Fq, for even n. This strategy is at the root of the compu-
tations we present in Section 3, which is chronologically the first path we followed. Using
the explicit formula from [Ber09] for n = 6, one finds for instance that for g ≥ 3 and q ≥ 25,
we have Nq(g) ≥ 1 + q + 1.55

√
q.

We then quickly realised that by using Katz–Sarnak theory, one can actually get an opti-
mal result of this flavor, namely that for every ε > 0 and every g, there exists a q0 such that
for q> q0, one has Nq(g) ≥ 1 + q + (2g − ε)

√
q (see Corollary 2·3). We were surprised to

find no trace of this result in the existing literature, as it can be derived easily. Notice though
that a related result appears already in [Ser20, remark 1·1·2]: For every curve C/Fq and
ε > 0, we have |#C(Fqi) − (qi + 1)| ≥ (2g − ε)

√
qi for infinitely many i.

One drawback of the method used in Section 2 in comparison with the one in Section 3 is
of course that the value of q0 is unknown. It is then tempting to push the method of Section 3
using Sn(q, Hg) further on, in particular since one shows in Theorem 3·9 that the limit when
n goes to infinity of

a2n(g) :=
(

lim
q→∞

S2n(q, Hg)

q2g−1+n/2

) 1
2n

is 2g. This proves that the strategy using moments provides the same asymptotic bound as
Katz–Sarnak. But the lack of an explicit formula for S2n(q, Hg) when n is large also prevents
us from giving an explicit value for q0. Interestingly though, one can show that a2n(g) can
also be efficiently computed using a representation of USp2g; see Theorem 3·8.

In Section 4 we develop yet another approach, which surpasses our best lower bounds
from Section 3: we show that under relatively mild hypotheses, a hyperelliptic curve C of
genus g can be covered by hyperelliptic curves of genus 2g and 2g + 1 that have at least as
many rational points as does C. By starting with well-chosen hyperelliptic curves of genus 2
and 3 with at least 1 + q + 4

√
q − 32 points, we can recursively construct a hyperelliptic

curve of any desired genus that has at least this many rational points. This lower bound is
obviously smaller than the one we obtain using the Katz–Sarnak approach, but it is better
than the one we find using the first few values of Sn(q, Hg), and it applies to all q. The
method also suggests an algorithm for producing an explicit curve of any given genus that
surpasses this lower bound; see Section 4.3.
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Lower bounds on the maximal number of rational points 215

2. Lower bounds from Katz–Sarnak distribution

For g ≥ 2, let Mg denote the (coarse) moduli space of smooth projective genus-g curves,
and let Hg denote the subspace of hyperelliptic curves. Note that Mg(Fq) and Hg(Fq)
consist of Fq-isomorphism classes of curves that have models over Fq. Let M′

g(Fq) and
H′

g(Fq) denote the sets of Fq-isomorphism classes of (the appropriate types of) curves
over Fq.

THEOREM 2·1 (Katz–Sarnak, [KS99, theorems 10·7·12 and 10·8·2]). Fix g ≥ 2. Let m be
the Haar measure on USp2g, the compact symplectic group. If f is a continuous function on
USp2g that is constant on the conjugacy classes, then∫

m∈USp2g

f (m) dm =
∫
θ∈[0,π]g

f ◦ h(θ) dμg(θ)

= 1

#Mg(Fq)
·

∑
C∈M′

g(Fq)

f ◦ h(θC)

#AutFq(C)
+ O(q−1/2) ,

where θC = (θ1, . . . , θg) ∈ [0, π]g are the Frobenius angles of the Jacobian of C, where h is
the function given by

h(θ1, . . . , θg) = diag(eiθ1 , . . . , eiθg , e−iθ1 , . . . , e−iθg) ,

and where dμg(θ) = δg(θ) dθ1 · · · dθg is the density measure with

δg(θ) = 1

g!
∏
j<k

(
2 cos (θj) − 2 cos (θk)

)2 ∏
j

( 2

π
sin2 (θj)

)
.

The same holds when one replaces Mg with Hg.

As a consequence of Theorem 2·1, we obtain the following result. For Mg this is [Lac16,
corollary 4·3]; the proof for Hg follows the same argument presented in [Lac16].

PROPOSITION 2·2. Fix g ≥ 2. For a genus-g curve we write #C(Fq) = 1 + q + τ (C)
√

q.
Then we have

#{C ∈M′
g(Fq), τ (C) ≤ x}

#Mg(Fq)
= F(x) + O(q−1/2) ,

where F(x) = ∫
Ax

dμg and Ax = {(θ1, ..., θg) ∈ [0, π]g:
∑

j 2 cos θj ≤ x}. The same holds
when one replaces Mg with Hg.

COROLLARY 2·3. Fix g ≥ 2 and ε > 0. For all sufficiently large q, there exist hyperelliptic
genus-g curves C/Fq and C′/Fq with #C(Fq) ≥ 1 + q + (2g − ε)

√
q and #C′(Fq) ≤ 1 + q −

(2g − ε)
√

q.

Proof. Applying Proposition 2·2 to Hg, we find that for q large enough there exists c> 0
such that

#{C ∈H′
g(Fq), τ (C) ≤ 2g − ε}

#Hg(Fq)
− F(2g − ε) ≤ c

q1/2
.
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216 BERGSTRÖM, HOWE, LORENZO GARCÍA AND RITZENTHALER

Since F : R→ [0, 1] does not depend on q and is a continuous, non-negative, strictly
increasing function on [−2g, 2g] with F(2g) = 1, we have also, for q large enough,

F(2g − ε) ≤ 1 − c

q1/2
− 1

q2g−1
.

Hence,

#{C ∈H′
g(Fq), |τ (C)| ≤ 2g − ε}

#Hg(Fq)
≤ F(2g − ε) + c

q1/2
≤ 1 − 1

q2g−1
.

Since #Hg(Fq) = q2g−1 [BG01, proposition 7·1, p. 87], multiplying the previous inequality
by this cardinality, we see that there exists a hyperelliptic curve C/Fq with #C(Fq) ≥ 1 +
q + (2g − ε)

√
q points. Taking its quadratic twist C′ gives the other inequality.

Remark 2·4. Actually, the theory of Katz–Sarnak (in particular [KS99, 9·6·10]) allows us to
prove a similar result for low-dimensional families of curves. For a given prime �, let S be
a connected normal scheme, separated and of finite type over Z[1/�]. Let X/S be a smooth
scheme such that for each finite field k of characteristic different from � and each point
s ∈ S(k), Xs/k is a curve of genus g. We assume that for each Xs the geometric monodromy
group satisfies [KS99, 9·3·7·2]; in particular, it is conjugate in GL2g to a constant group.
Examples of such families include for instance the generic element of the one-parameter
families y2 = f (x)(x − t) of hyperelliptic curves [Hal08] or cyclic triple covers of P1 [AP07].

Now we simply assume that the dimension of the image of S ⊗ k̄ in the moduli space is at
least 1. Then there exists a function g(q) going to infinity such that #S(Fq) ≥ g(q). Moreover,
Katz–Sarnak implies that for x ∈ [−2g, 2g] we have

#{s ∈ S(Fq), |τ (Xs)| ≤ x}
#S(Fq)

− F(x) ≤ f (q)

for a strictly increasing distribution function F(x) and a decreasing function f (q) going to 0.
Given ε > 0, let q be large enough so that F(2g − ε) ≤ 1 − f (q) − 1

g(q) . Then

#{s ∈ S(Fq), |τ (Xs)| ≤ 2g − ε}
#S(Fq)

≤ 1 − 1

g(q)
≤ #S(Fq) − 1

#S(Fq)
,

which shows there is at least one curve in the family X/S with more than 1 + q + (2g −
ε)

√
q points. More generally, this argument can be adapted to prove the existence of a curve

with number of points in the interval [1 + q + (a − ε)
√

q, 1 + q + (a + ε)
√

q] for any a with
−2g ≤ a ≤ 2g.

Remark 2·5. The lower bound of Corollary 2·3 is of course far from answering Serre’s ques-
tion on the existence of a curve with bounded defect. Even the question of the existence of
infinitely many p for which there exist defect-0 curves of a fixed genus g over Fp is open. The
following is a naive attempt to make up our mind on a direction to take for this challenge.
The Jacobians of such curves are isogenous to powers of an ordinary elliptic curve E/Fp

with trace −�2
√

p. It is tempting to look at the number of principally polarized abelian
varieties of this type up to isomorphism. Using the equivalence of categories [KNRR21,
corollary 3·6], this is the same as counting, up to isometry, unimodular positive definite her-
mitian R-lattices of rank g where R =Z[x]/(x2 + �2

√
px + p). When R is maximal, crude

estimations of the mass formulae and class numbers of [Sie35, Sie37] kindly provided by
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Lower bounds on the maximal number of rational points 217

[Kir22] show that their number should be smaller than C(g) × disc(R)g(g+1)/4+o(1), where
C(g) is a constant that does not depend on R. Since disc(R) is smaller than 4

√
p, we get at

most pg(g+1)/8+o(1) distinct principally polarized abelian varieties isogenous to the power of
an elliptic curve with trace −�2

√
p. If one makes the assumption that Jacobians over Fp are

well distributed among principally polarised abelian varieties over Fp, the ‘chance’ to fall in
the Jacobian locus may be estimated as p(3g−3)−g(g+1)/2. Hence for g> 6, it is heuristically
unlikely to find a defect-0 curve over Fp when p is large. We believe that the assumption that
R be maximal is not necessary, but proving this would require a better understanding of the
mass formulae for non-projective R-lattices.

3. Lower bound from explicit power of traces
3·1. Weighted trace powers

Let us define the correct moments we want to compute. If C/Fq is a genus-g curve, we
denote by [C] the set of representatives of its twists and define

sn(C) =
∑

C′∈[C]

(q + 1 − #C′(Fq))n

#AutFq(C′)
. (3·1)

The following result is probably well known, but we provide a proof for lack of proper
reference (note that the case s0(C) = 1 can be found in [vdGvdV92, proposition 5·1]).

PROPOSITION 3·1. For every curve C/Fq and every n ≥ 0, sn(C) is an integer.

For this, we will need some elementary lemmas. As in [MT10, proposition 9], let us
define for g ∈ Aut

Fq
(C), the set [g]Fr of elements h such that there exists x ∈ Aut

Fq
(C) with

h = xg Frx−1, where Fr is the geometric Fq-Frobenius morphism (acting here on x−1). To a
given set [g]Fr, one can associate a twist C′ of C.

LEMMA 3·2 ([vdGvdV92, proof of proposition 5·1]). Let g ∈ Aut
Fq

(C) and let C’ be

the twist associated to the Frobenius conjugacy class [g]Fr of g. Then #AutFq(C′) · #[g]Fr =
#Aut

Fq
(C).

LEMMA 3·3. Let K be a field of characteristic 0, let n and k be positive integers and let
G be a finite subgroup of GLk(K).

(i) For every A, B ∈ Mn(K) we have (A · B)⊗k = A⊗k · B⊗k.

(ii) Hence, the map g �→ g⊗n from G to G⊗n ⊆ GLkn(K) induces a surjective morphism
on its image Gn.

(iii) The matrix PGn = (1/#G)
∑

g∈G g⊗n = (1/#Gn)
∑

g∈Gn
g is a projection. Hence its

eigenvalues are 0 and 1.

By abuse of notation we denote by g ∈ Aut
Fq

(C) the corresponding element in
Aut

Fq
(T�JacC) that we see as a matrix of size 2g × 2g with coefficients in Z� for a prime

� �= p. We fix an embedding Z� ↪→C of Z� into the complex numbers. Let πC denote the
Frobenius endomorphism of JacC or its matrix for the action on T�JacC in some arbitrary
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basis. Let us recall from [MT10, proposition 11] that if C′ is a twist of C given by an element
g ∈ Aut

Fq
(C) then πC′ = πC · g.

Proof of Proposition 3·1. One has

sn(C) =
∑

C′∈[C]

(q + 1 − #C′(Fq))n

#AutFq(C′)
=

∑
g∈Aut

Fq
(C)

(q + 1 − #C′(Fq))n

#Aut
Fq

(C)

=
∑

g∈Aut
Fq

(C)

Tr(πC′)n

#Aut
Fq

(C)
=

∑
g∈Aut

Fq
(C)

Tr((πC′)⊗n)

#Aut
Fq

(C)

=
∑

g∈Aut
Fq

(C)

Tr((πC · g)⊗n)

#Aut
Fq

(C)
=

∑
g∈Aut

Fq
(C)

Tr(π⊗n
C · g⊗n)

#Aut
Fq

(C)

= Tr

(
π⊗n

C · 1

#Aut
Fq

(C)

∑
g∈Aut

Fq
(C)

g⊗n

)
= Tr(π⊗n

C · PGn) .

The first equality is by definition, the second one by Lemma 3·2, the third one by the Weil
Conjectures, the fourth one is a classical property of the tensor product of matrices (see for
instance [Ser98, chapter 2 proposition 2]), the fifth one is [MT10, proposition 11], the sixth
one is Lemma 3·3(i), the seventh is the commutativity of the sum and the trace of matrices,
and the eighth is Lemma 3·3(ii).

Now, since for every g ∈ Aut
Fq

(C) we have g ◦ Fr = Fr ◦ g′ for some g′ ∈ Aut
Fq

(C), we

see that π⊗n
C commutes with PGn , hence the eigenvalues of their product are the product of

the eigenvalues. It is well known that the complex eigenvalues of πC, and therefore of π⊗n
C ,

are algebraic integers, while the eigenvalues of PGn are 0 or 1. We conclude that the trace is
an algebraic integer as well. Now the conclusion follows since we know that sn(C) is also a
rational number, so it must be an integer.

For X =Mg or Hg we denote by Sn(q, X ) the sum of the sn(C) when C runs over a set
of representatives for the Fq-isomorphism classes of curves in X over Fq. Then, for two
polynomials f and g, let [f /g] denote the polynomial quotient in the Euclidian division of
f by g. In Theorem 3·4 and Remark 3·5, the polynomial quotients correspond to the stable
part of the cohomology, see [MPP19, section 1·5] together with [Ber09, section 13].

THEOREM 3·4. For every g ≥ 2 and prime power q we have

S2(q, Hg) = [q2g] − 1

[2ex]S4(q, Hg) =
[

q2g(3q2 + q + 1)

q + 1

]

− 1

2
(q − 1)(q − 2)(q + 1)g2 + 1

2
( − q3 + 2q2 − 7q + 2)g − 3q + 2

[2ex]S6(q, Hg) =
[

q2g(15q4 + 16q2 + 2q + 1)

(q + 1)2

]
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− 1

24
(q − 1)(q − 3)(q + 1)(q3 − 6q2 + 4q + 13)g4

− 1

12
(q + 1)(q − 3)2(q3 − 4q2 + 18q − 3)g3

+ 1

24
(q6 − 9q5 − 99q4 + 382q3 − 469q2 + 491q − 9)g2

+ 1

12
(q6 − 9q5 − 19q4 + 78q3 − 423q2 + 567q − 723)g − 15q2

+ 30q − 61 − δq
5

8
g(g − 1)(g − 2)

(
(g − 3)(q − 1) − 4

)
,

where δq is equal to 1 if q ≡ 0 mod 2 and 0 otherwise.

Proof. In [Ber09, section 7,10] it is described how to compute Si(q, Hg) for i = 2, 4 and
6. Note that in the notation of [Ber09], Si(q) equals a1i |g.

Remark 3·5. From [Ber09, section 7,10] we see that the information missing to compute
S8(q, Hg) for any g ≥ 3, is S8(q, M1,1), S8(q, H2) and

∑
(C,p)∈M′

1,1(Fq)

(q + 1 − #C′(Fq))6(q + 1 − r1(C))2

#AutFq(C)
, (3·2)

in the notation of [Ber09, section 12]. Here, q + 1 − r1(C) is the number of ramification
points over Fq of (C,p) as a double cover of P1. For every q, S8(q, H2) can be determined
through the information in [Pet15, theorem 2·1]. A level two structure on an elliptic curve
can be described in terms of a marking of its ramification points. For odd q, the cohomol-
ogy of local systems on M1,1[2] ⊗ Fq (the moduli space of elliptic curves with a level
two structure) and its structure as a representation of SL(2, F2) ∼= S3, is well known via the
Eichler–Shimura isomorphism, see [Del71] and [Fal87, theorem 6]. Using this we can also
compute (3·2). Putting these results together we find that for every g ≥ 2 and odd q, we have

S8(q, Hg) =
[

q2g(105q6 − 105q5 + 273q4 − 83q3 + 66q2 + 3q + 1)

(q + 1)3

]

− 1

720
(q − 1)(q − 3)(q − 4)(q − 5)(q + 1)2(q3 − 9q2 + 15q + 33)g6

− 1

240
(q − 3)(q − 5)(q + 1)(q6 − 13q5 + 92q4 − 280q3

+ 215q2 + 565q − 100)g5

+ 1

144
(q − 3)(q + 1)(q7 − 18q6 − 11q5 + 828q4 − 3455q3

+ 5826q2 − 4947q + 48)g4

+ 1

48
(q − 3)(q8 − 17q7 + 55q6 + 61q5 − 1329q4 + 3573q3

− 3219q2 + 2095q + 124)g3
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+ 1

360
(− 2q9 + 40q8 + 19q7 − 2480q6 − 3470q5 + 52390q4

− 166449q3 + 338580q2 − 424098q + 453870)g2

+ 1

60
(− q9 + 20q8 − 85q7 − 120q6 − 214q5 + 2530q4

− 22515q3 + 62220q2 − 127725q + 201870)g

− 105q3 + 420q2 − 1218q + 2582 .

THEOREM 3·6. For every g ≥ 2, prime power q and even n ≥ 2, let

aq := (Sn(q, Hg)/q2g−1+n/2)1/n.

There exists a hyperelliptic genus-g curve C/Fq with #C(Fq) ≥ 1 + q + aq
√

q and a
hyperelliptic curve C′/Fq with #C′(Fq) ≤ 1 + q − aq

√
q.

Proof. By the above, we see that there are curves C1, . . . , Cq2g−1 over Fq such that Sn(q) =∑q2g−1

i=1 sn(Ci). Since n is even, all the sn(Ci) are non-negative and so there must be a j such
that sn(Cj) ≥ Sn(q)/q2g−1. Since

s0(Cj) =
∑

C∈[Cj]

1

#AutFq(C)
= 1,

sn(Cj) can be seen as a weighted average, and it then follows that there is a C ∈ [Cj] such
that (#C(Fq) − q − 1)n ≥ Sn(q)/q2g−1. This shows that #C(Fq) ≤ q + 1 − aq

√
q with aq =

(Sn(q)/q2g−1+n/2)1/n. The quadratic twist of C gives the curve with the opposite bound.

Using the formulas of Theorem 3·4 and Remark 3·5 we get, for i = 2, 4, 6, and 8, concrete
lower bounds for (Sn(q, Hg)/q2g−1+n/2)1/n valid for q large enough.

COROLLARY 3·7. There exists a hyperelliptic curve of genus g over Fq with #C(Fq) ≥
1 + q + a

√
q with:

(i) a = (S4(q)/q2g+1)1/4 ≥ 1.3 for g ≥ 3 and q ≥ 13;

(ii) a = (S6(q)/q2g+2)1/6 ≥ 1.55 for g ≥ 3 and q ≥ 25;

(iii) a = (S8(q)/q2g+3)1/8 ≥ 1.71 for g ≥ 3 and odd q ≥ 11.

One sees that the coefficient of the leading term of Sn(q) controls the growth of the bound
on the number of points. This coefficient can be obtained quickly, even when a complete for-
mula for Sn(q) is out of reach, thanks to a relation with representation theory of the compact
symplectic group USp2g.

THEOREM 3·8. For every g ≥ 2 and even n ≥ 2 let

an(g) := lim
q→∞

Sn(q, X )

qdim X+n/2

with X =Mg or Hg. Then an(g) is equal to the number of times the trivial representation
appears in the USp2g-representation V⊗n with V the standard representation.
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Proof. Using Theorem 2·1 with f = Trn, we see that

an(g) =
∫

(θ1,...,θg)∈[0,π]g

( g∑
j=1

2 cos (θj)

)n

dμg(θ1, . . . , θg) , (3·3)

and that this integral also can be written as∫
m∈USp2g

Tr(m⊗n) dm .

By the orthogonality of characters it follows that this integral counts the number of times
that the trivial representation appears in the nth tensor product of the standard representation.

The sequence an(g) is called a moment sequence in [KS09]; in their notation it equals
M[s1](n). In this paper Kedlaya and Sutherland give an effective formula to compute an(g)
in terms of a sum of determinants of binomial expressions. However, to prove the following
limit result, it is easier to use the integral.

THEOREM 3·9. For every g ≥ 2, we have

lim
n→∞ (a2n(g))1/2n = 2g .

Proof. First notice that since |cos (θ)| ≤ 1 we have |an| ≤ (2g)n, so

lim sup
n→∞

(a2n(g))1/2n ≤ 2g.

Let us now change variables by setting ti = 2 cos (θi). Then Equation (3·3) becomes

an(g) =
∫

(t1,...,tg)∈[−2,2]g

( g∑
j=1

tj

)n g∏
j=1

√
4 − t2j

∏
1≤j≤k≤g

(tj − tk)2 dt1 . . . dtg. (3·4)

Since all factors inside the integral of a2n(g) are positive, the value of the integral is greater
than the one taken on any sub-domain of [−2, 2]g. Fix 0< ε < 1 and define

Ij =
[
2 − 2ε+ (2j − 2)

ε

2g − 1
, 2 − 2ε+ (2j − 1)

ε

2g − 1

]
⊆ [2 − 2ε, 2 − ε]

for j = 1, . . . , g. The sub-domain S = I1 × · · · × Ig is constructed so that the values of the ti
are separated by at least ε/(2g − 1) and are close to 2. Then

a2n(g) ≥
∫

(t1,...,tg)∈S

( g∑
j=1

tj

)2n g∏
j=1

√
4 − t2j

∏
1≤j≤k≤g

(tj − tk)2 dt1 · · · dtg

≥
∫

(t1,...,tg)∈S
(2g − 2εg)2n · εg ·

(
ε

2g − 1

)g(g−1)

dt1 · · · dtg

≥
(

ε

2g − 1

)g

· (2g − 2εg)2n · εg ·
(

ε

2g − 1

)g(g−1)

.

So lim infn→∞ (a2n(g))1/2n ≥ 2g and the result follows.
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4. Lower bounds from explicit constructions

Corollary 2·3 shows that for a fixed genus g and fixed ε > 0, for every large enough
q there is a hyperelliptic curve C/Fq of genus g whose number of points is within ε

√
q

of the Weil bound. In this section we prove a result that is much weaker than this, but
that has the advantages of working for every q and g ≥ 2 and of being constructive — see
Section 4·3.

THEOREM 4·1. Let g> 1 be an integer and let q be a prime power.

(i) If q is odd, there is a hyperelliptic curve C/Fq of genus g with

#C(Fq)>

⎧⎨
⎩

1 + q + 4
√

q − 5 if q< 512;

1 + q + 4
√

q − 32 if q> 512.

(ii) If q is even, there is a hyperelliptic curve C/Fq of genus g with

#C(Fq)>

⎧⎨
⎩

1 + q + 4
√

q − 5 if q ≤ 8;

1 + q + 4
√

q − 12 if q> 8.

Remark 4·2. When q is small with respect to g, there are in fact hyperelliptic curves of genus
g over Fq having 2q + 2 rational points, the largest number possible for a hyperelliptic curve
over Fq of any genus. The sharpest result in this direction that we are aware of is [Pog17,
theorem 1·6], which implies that for g ≥ 2, if q is odd and q ≤ 2g + 3, or if q is even and
q ≤ g + 1, then there is a hyperelliptic curve of genus g over Fq with 2q + 2 rational points.
(The cited result speaks of curves with no points, but the quadratic twist of such a curve has
2q + 2 points.)

The basic idea of our proof of Theorem 4·1 is to create a tower of double covers of
hyperelliptic curves, each with at least as many rational points as the one below it. Here
is the structure of the argument in the case where q is odd: Let C be a hyperelliptic curve
of genus g over Fq. If C has exactly two rational Weierstrass points then we can construct
hyperelliptic double covers D of C, one of genus 2g and one of genus 2g + 1, such that
D has exactly two rational Weierstrass points and such that #D(Fq) ≥ #C(Fq). By using a
double-and-add process starting from a curve of genus 2, we can reach every genus whose
binary expansion starts with 10; starting from a curve of genus 3, we can reach every genus
whose binary expansion starts with 11. Thus, the lower bound we get in the statement of the
theorem is essentially the largest number of points we can obtain on a curve of genus 2 that
is suitable as a starting curve for our construction.

In Section 4·1 we flesh out the tower-building argument for odd q sketched in the preced-
ing paragraph. We also explain how to construct appropriate base curves of genus 2 by gluing
together elliptic curves with many points, and appropriate base curves of genus 3 by taking
unramified double covers of such genus-2 curves. In Section 4·2 we show how to modify the
argument for odd q in order to deal with the fact that in characteristic 2, hyperelliptic curves
are Artin–Schreier extensions of P1 rather than Kummer extensions.
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The double-cover argument that we use to prove Theorem 4·1 was inspired by
a similar double-cover argument from [EHK+04], which shows that if C is a
not-necessarily-hyperelliptic curve of genus g over Fq, then for every h ≥ 4g there is a curve
D/Fq of genus h that is a double cover of C and that has at least as many rational points as
does C.

4·1. Odd characteristic

In this section, we prove Theorem 4·1 for finite fields of odd characteristic. We start by
stating and proving several lemmas that we will use in the proof.

LEMMA 4·3. Let q be an odd prime power and let C/Fq be a hyperelliptic curve of
genus g with fewer than q rational Weierstrass points. Then there is a hyperelliptic curve D
of genus 2g + 1 that is a double cover of C and that has at least as many rational points as
does C.

If C has exactly two rational Weierstrass points, then D can be chosen to have exactly two
rational Weierstrass points.

Remark 4·4. If C/Fq is a hyperelliptic curve with #C(Fq)> q + 3 then C has fewer than q
rational Weierstrass points.

Proof. Let ϕ be the canonical map from C to P
1. There are at least 2 points of P1 that do

not ramify in ϕ, and we can pick two such points and choose a coordinate function x on P
1

so that those two points lie at 0 and ∞. That means that C has a hyperelliptic model of the
form y2 = f , where f ∈ Fq[x] is a separable polynomial of degree 2g + 2 such that f (0) �= 0.

Let n be a nonsquare in Fq, and consider the two hyperelliptic curves D : y2 = f (x2) and
D′ : y2 = f (nx2). We note that both f (x2) and f (nx2) are separable polynomials of degree
4g + 4, so both D and D′ have genus 2g + 1. The two natural double covers D → C and
D′ → C are quadratic twists of one another, and it follows that #D(Fq) + #D′(Fq) = 2#C(Fq).
Therefore, one of these two curves has at least as many rational points as does C.

Suppose C has exactly two rational Weierstrass points. This time, we choose our coor-
dinate function x on P

1 so that these two points lie over x = 1 and x = n, where n is a
nonsquare element of Fq. Then x = 0 and x = ∞ do not ramify in ϕ, so again we have a
model of the form y2 = f , where f ∈ Fq[x] is a separable polynomial of degree 2g + 2 such
that f (0) �= 0, and we proceed as before. Note that the Weierstrass point (1,0) of C splits into
two rational Weierstrass points of D and (n,0) splits into nonrational points of D, while (n,0)
splits into two rational Weierstrass points of D′ and (1,0) splits into nonrational points of D′.
Therefore, each of D and D′ has exactly two rational Weierstrass points, so no matter which
one we choose as our cover, we have the desired number of rational Weierstrass points.

LEMMA 4·5. Let q be an odd prime power and let C/Fq be a hyperelliptic curve of genus
g with exactly two rational Weierstrass points. Then there is a hyperelliptic curve D/Fq of
genus 2g that is a double cover of C, that has exactly two rational Weierstrass points, and
that has at least as many rational points as does C.

Proof of Lemma 4·5. Let ϕ be the canonical map from C to P
1, and choose a coordinate

function x on P
1 so that the two rational Weierstrass points of C lie over x = 0 and x =

∞. Then C has a hyperelliptic model of the form y2 = f , where f ∈ Fq[x] is a separable
polynomial of degree 2g + 1 such that f (0) = 0 and such that f has no other rational roots.
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By scaling x and y, if necessary, we can also assume that f is monic. For every nonzero
a ∈ Fq let ha(x) = f (x2 − a2), so that ha is a monic separable polynomial in Fq[x] of degree
4g + 2 whose only rational roots are x = a and x = −a. Let Da be the hyperelliptic curve
y2 = ha. Then Da has genus 2g and is a double cover of C, and Da has exactly two rational
Weierstrass points. We will show that there is a value of a so that #Da(Fq) ≥ #C(Fq).

Let χ denote the quadratic character on Fq, so that for z ∈ Fq we have χ(z) = 1 if z is a
nonzero square, χ(z) = 0 if z = 0, and χ(z) = −1 if z is a nonsquare. Consider the degree-4
map Da → P1 that takes a point (x,y) of Da to the point x2 − a2 of P1. A finite point z of
P

1 will have a rational point of D lying over it if and only if there are rational solutions to
x2 = z + a2 and the value of f (z) is a square. Even stronger: The number of rational points
of D lying over z is equal to (1 + χ(z + a2))(1 + χ(f (z)). On the other hand, if z = ∞ then
there are two rational points of D lying over it, because ha is monic of even degree. Thus the
number of rational points on D is given by

#Da(Fq) = 2 +
∑
z∈Fq

(1 + χ(z + a2))(1 + χ(f (z))

= 2 +
∑
z∈Fq

(1 + χ(f (z))) +
∑
z∈Fq

χ(z + a2) +
∑
z∈Fq

χ(z + a2)χ(f (z))

= 1 + #C(Fq) +
∑
z∈Fq

χ(z + a2) +
∑
z∈Fq

χ(z + a2)χ(f (z))

= 1 + #C(Fq) +
∑
z∈Fq

χ(z + a2)χ(f (z)) ,

where the third equality follows from the fact that #C(Fq) = 1 +∑
z∈Fq

(1 + χ(f (z))) and

the final equality follows from the fact that the sum over all z of χ(z + a2) is zero, since the
number of nonzero squares in Fq is equal to the number of nonsquares. Define

Na :=
∑
z∈Fq

χ(z + a2)χ(f (z)) ,

so that #Da(Fq) = 1 + #C(Fq) + Na. To complete the proof, we need only show that there is
a nonzero a such that Na ≥ −1.

We will also need an analog of Na when a = 0, which we define as follows. Let c be the
coefficient of x in the polynomial f , and let h0 be the monic separable polynomial of degree
4g such that f (x2) = x2h0(x). Let D0 be the hyperelliptic curve of genus 2g − 1 given by
y2 = h0. Arguing as before, we find that

#D0(Fq) = 2 + (1 + χ(c)) +
∑
z∈F×

q

(1 + χ(z))(1 + χ(f (z))

= 3 + χ(c) +
∑
z∈F×

q

(1 + χ(f (z))) +
∑
z∈F×

q

χ(z) +
∑
z∈F×

q

χ(z)χ(f (z))

= 1 + χ(c) + #C(Fq) +
∑
z∈F×

q

χ(z) +
∑
z∈F×

q

χ(z)χ(f (z))
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= 1 + χ(c) + #C(Fq) +
∑
z∈F×

q

χ(z)χ(f (z))

= 1 + χ(c) + #C(Fq) +
∑
z∈Fq

χ(z)χ(f (z)) .

If we define N0 to be

N0 :=
∑
z∈Fq

χ(z)χ(f (z)) ,

then #D0(Fq) = 1 + χ(c) + #C(Fq) + N0. Since D0 is hyperelliptic, it can have at most 2q
rational points in addition to the 1 + χ(c) points it has that lie over x = 0. Thus, N0 ≤ 2q −
#C(Fq).

Consider the sum, over all a ∈ Fq, of Na. We have∑
a∈Fq

Na =
∑
a∈Fq

∑
z∈Fq

χ(z + a2)χ(f (z))

=
∑
z∈Fq

χ(f (z))
∑
a∈Fq

χ(z + a2)

=
∑
z∈F×

q

χ(f (z))
∑
a∈Fq

χ(z + a2),

where the last equality follows because χ(f (0)) = 0. For nonzero z ∈ Fq, consider the genus-
0 curve Xz defined by y2 = x2 + z. The curve Xz has two points at infinity, so arguing as
before we find that

#Xz(Fq) = 2 +
∑
a∈Fq

(1 + χ(a2 + z))

= q + 2 +
∑
a∈Fq

χ(a2 + z) .

Since Xz has genus 0 and hence 1 + q rational points, we see that
∑

a∈Fq
χ(a2 + z) = −1

when z �= 0. Therefore,∑
a∈Fq

Na = −
∑
z∈F×

q

χ(f (z)) = −
∑
z∈Fq

χ(f (z)) = q −
∑
z∈Fq

(1 + χ(f (z))) = 1 + q − #C(Fq) .

Suppose there were no nonzero a with Na ≥ −1. Then we would have

1 + q − #C(Fq) =
∑
a∈Fq

Na = N0 +
∑

a∈F×
q

Na ≤ 2q − #C(Fq) + (q − 1)( − 2) = 2 − #C(Fq) ,

which would imply 1 + q ≤ 2, a contradiction. Therefore there must be a nonzero a with
Na ≥ −1, and for every such a the curve Da satisfies the desired conditions.

Lemmas 4·3 and 4·5 give us the means to iterate a construction, but we still need base
curves to start with. These will be provided by Lemmas 4·8 and 4·9. To prepare for the proofs
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of those lemmas, we need some background information on 2-isogenies and 2-isogeny
volcanoes.

Let q be an odd prime power and let t be an integer, coprime to q, with t2 < 4q. Let Ct be
the isogeny class of ordinary elliptic curves over Fq with trace t, and set � := t2 − 4q< 0.
Write �= F2�0 for a fundamental discriminant �0. For every divisor f of F, there are
elliptic curves in Ct whose endomorphism rings are isomorphic to the quadratic order of
discriminant f 2�0 [Wat69, theorem 4·2, pp. 538–539].

The height of the isogeny class Ct (more properly, the height of the 2-isogeny volcano
associated to Ct) is equal to the 2-adic valuation of the conductor F. If E is an elliptic curve
in Ct whose endomorphism ring has discriminant f 2�0, then the level of E is the 2-adic
valuation of f . (This is the terminology of [FM02]; Kohel used different terminology in his
thesis [Koh96], which introduced these concepts.) We see that Ct contains elliptic curves of
every level from 0 to the height of Ct.

LEMMA 4·6. Let Ct be an ordinary isogeny class of trace t and discriminant �= F2�0

as above, and suppose Ct has height h> 0. Then:

(i) every elliptic curve in Ct of level h has exactly one rational point of order 2, and the
image of the corresponding 2-isogeny is an elliptic curve of level h − 1;

(ii) every elliptic curve in Ct of level � with 0< �< h has exactly three rational points of
order 2. For two of these points, the image of the corresponding 2-isogeny is a curve
of level �+ 1, and for the third the image is an elliptic curve of level �− 1;

(iii) every elliptic curve in Ct of level 0 has exactly three rational points of order 2. The
images of the corresponding 2-isogenies are curves of level 0 or 1, and the number of
points giving rise to a curve of level 0 is equal to 2, 1, or 0, corresponding to whether
�0 ≡ 1 mod 8, �0 ≡ 0 mod 4, or �0 ≡ 5 mod 8.

Proof. This follows immediately from [FM02, theorem 2·1, p. 278] or [Koh96, proposi-
tion 23, p. 54].

LEMMA 4·7. Let q be an odd prime power and let E : y2 = (x − a)(x − b)(x − c) be an
elliptic curve over Fq with all of its 2-torsion rational. Let ϕ : E → F be the 2-isogeny with
kernel generated by the point (a,0) on E. Then all of the 2-torsion of F is rational if and only
if (a − b)(a − c) is a square.

Proof. By shifting x-coordinates on E by a, we see that it suffices to prove the statement
when a = 0. Using [Sil09, example 4·5, p. 70], for example, we find that one model for F
is given by y2 = x3 + 2(b + c)x2 + (b − c)2x. The 2-torsion of F is all rational if and only if
the quadratic x2 + 2(b + c)x + (b − c)2 splits, which happens if and only if its discriminant
16bc is a square.

LEMMA 4·8. Let q be an odd prime power. Then there is a curve C/Fq of genus 2 with
exactly two rational Weierstrass points such that

#C(Fq)>

⎧⎨
⎩

1 + q + 4
√

q − 5 if q< 512;

1 + q + 4
√

q − 32 if q> 512.
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Proof. For q< 512 we find examples of such curves by computer search; a list of exam-
ples is included with the ancillary files included with the arXiv version of this paper. Thus
we may assume that q> 512.

First consider the case where q ≡ 3 mod 4. Let t be the largest integer such that t ≡ q +
1 mod 8 and (t, q) = 1 and t2 ≤ 4q, so that t> 2

√
q − 16> 0. Set � := t2 − 4q and write

�= F2�0 for a fundamental discriminant �0. We note that �≡ 4 mod 32, so that F ≡
2 mod 4 and �0 ≡ 1 mod 8. If we let C−t be the isogeny class of elliptic curves of trace −t
over Fq, then C−t has height 1.

Let E be an elliptic curve in C−t of level 0. By Lemma 4·6, E has two rational 2-isogenies
to elliptic curves of level 0 and one rational 2-isogeny to an elliptic curve E′ of level 1. Write
E as y2 = x(x − a)(x − b), with coordinates chosen so that the 2-isogeny from E to E′ has
kernel generated by (0,0). Since E′ does not have all of its 2-torsion rational, Lemma 4·7
shows that ab is not a square; on the other hand, since the other curves 2-isogenous to E do
have their 2-torsion rational, we find that a(a − b) and b(b − a) are both squares.

Define elements αi and βi of Fq, for i = 1, 2, 3, by

α1 := 0, α2 := a, α3 := b, β1 := a, β2 := b, β3 := 0.

Let ψ : E[2] → E[2] be the isomorphism that takes (αi, 0) to (βi, 0) for each i. Since the
discriminant of the endomorphism ring of E is congruent to 1 mod 8, the curve E has no
nontrivial automorphisms, and ψ is not the restriction to E[2] of an automorphism of E.
Therefore, from [HLP00, propositions 3 and 4, p. 324] we obtain a curve C of genus 2
whose Jacobian is isogenous to E2, and the formulas in the cited results give us a model for
C. In this case, we find that C is given by y2 = h with

h = a5b5(a − b)5(a2 − ab + b2)3
(

x2 + b

a

)(
x2 − a − b

b

)(
x2 − a

b − a

)
.

Now, since ab and −1 are both nonsquare, it follows that −b/a is a square, so the first
quadratic factor in h splits. On the other hand, since b(b − a) is a square, we see that (a −
b)/b is not a square, so the second quadratic factor of h is irreducible. Likewise, the third
quadratic factor is irreducible. Therefore, C has exactly two rational Weierstrass points.

Since the Jacobian of C is isogenous to E2, we have #C(Fq) = 1 + q + 2t> 1 + q +
4
√

q − 32.
Now we turn to the case where q ≡ 1 mod 4. Let t be the largest integer such that t ≡

2 mod 4 and (t, q) = 1 and t2 ≤ 4q, so that t> 2
√

q − 8> 0. Let C−t be the isogeny class of
ordinary elliptic curves over Fq with trace −t, set � := t2 − 4q, and write �= F2�0 for a
fundamental discriminant �0. We note that �≡ 0 mod 16, so that either the height h of C−t

is at least 2, or h = 1 and �0 ≡ 0 mod 4.
Let E be an elliptic curve in C−t of level h − 1. Lemma 4·6 shows that if h ≥ 2, then E has

two 2-isogenies to elliptic curves of level h and one to an elliptic curve of level h − 2. The
curves of level h have only one rational point of order 2, while the curve of level h − 2 has
three rational points of order 2. On the other hand, if h = 1 and �0 ≡ 0 mod 4 then E has
two 2-isogenies to elliptic curves of level 1 and one to an elliptic curve of level 0. Again, the
curves of level 1 have only one rational point of order 2, while the curve of level 0 has three
rational points of order 2.

We see that in every case, E can be written in the form y2 = x(x − a)(x − b) where ab is a
square and where (a − b)/a and (b − a)/b are both nonsquares. Taking αi and βi as before,
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we find that the curve C given by y2 = h, with

h = a5b5(a − b)5(a2 − ab + b2)3
(

x2 + b

a

)(
x2 − a − b

b

)(
x2 − a

b − a

)
,

has Jacobian isogenous to E2. We again find that the first quadratic factor splits and the
other two are irreducible, so once again C has exactly two rational Weierstrass points. We
also once again have #C(Fq) = 1 + q + 2t.

Thus, for every odd prime power q we have shown that there is a curve of genus 2 over
Fq with exactly two rational Weierstrass points and with #C(Fq)> 1 + q + 4

√
q − 32.

LEMMA 4·9. Let q be an odd prime power. Then there is a hyperelliptic curve C/Fq of
genus 3 with exactly two rational Weierstrass points and with

#C(Fq)>

⎧⎨
⎩

1 + q + 4
√

q − 5 if q< 512;

1 + q + 4
√

q − 32 if q> 512.

Proof. The statement for q< 512 is verified by computer search; a list of examples of
such curves can be found in the ancillary files included with the arXiv version of this paper.
We assume now that q> 512.

First consider the case where q ≡ 3 mod 4. As in the proof of Lemma 4·8, we let t be the
largest integer such that t ≡ q + 1 mod 8 and (t, q) = 1 and t2 ≤ 4q, so that t> 2

√
q − 16>

0. We see that � := t2 − 4q can be written F2�0 for a fundamental discriminant �0 that is
congruent to 1 modulo 8 and a conductor F that is congruent to 2 modulo 4. If we let C−t be
the isogeny class of elliptic curves of trace −t over Fq, then C−t has height 1.

Let E be an elliptic curve in C−t of level 0. Lemma 4·6 shows that E has two rational 2-
isogenies to elliptic curves of level 0. Let E′ be one of these curves, and write E as y2 = x(x −
a)(x − b), with coordinates chosen so that the 2-isogeny from E to E′ has kernel generated
by (0,0). Since E′ is of level 0 it has all of its 2-torsion rational, so Lemma 4·7 shows that ab
is a square; therefore b/a is also a square, say b/a = c2.

Define elements αi and βi of Fq, for i = 1, 2, 3, by

α1 := 0, α2 := a, α3 := b, β1 := 0, β2 := b, β3 := a,

and let ψ : E[2] → E[2] be the isomorphism that takes (αi, 0) to (βi, 0) for each i. Since the
discriminant of the endomorphism ring of E is congruent to 1 mod 8, the curve E has no
nontrivial automorphisms, and ψ is not the restriction to E[2] of an automorphism of E.
Once again we use [HLP00, propositions 3 and 4, p. 324] to show that there is a genus-2
curve C whose Jacobian is (2,2)-isogenous to E2, and we find that one model for such a C is
given by y2 = h with

h = a5b5(a − b)8(a + b)3
(

x2 − c2
)(

x2 − 1/c2
)(

x2 + 1
)

.

Since the Jacobian of C is isogenous to E2, we have #C(Fq) = 1 + q + 2t> 1 + q +
4
√

q − 32.
Now we replace x with (2c2x + 1 − c2)/(2cx + c3 − c) and scale y appropriately to find

that C can also be written y2 = f , where
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f = −ax(x − 1)
(

x + (c2 − 1)2

4c2

)(
x2 + (c2 − 1)2

4c2

)
.

Note that the quadratic factor is irreducible.
Now, as in the proof of Lemma 4·3, we consider two double covers of C. Let g = f /x,

let n be a nonsquare element of Fq, let D be the curve y2 = g(x2), and let D′ be the curve
y2 = g(nx2). The curves D and D′ are both double covers of C: The map (x, y) �→ (x2, xy)
sends D to C, and the map (x, y) �→ (nx2, xy) sends D′ to C. The two covers are quadratic
twists of one another, so we have #D(Fq) + #D′(Fq) = 2#C(Fq), so at least one of D and
D′ has at least as many points as C. Also, the two curves are both hyperelliptic of genus
3. Furthermore, the rational Weierstrass point (1,0) of C splits into two rational Weierstrass
points of D while the rational Weierstrass point lying over x = −(c2 − 1)2/(4c2) does not,
because −1 is not a square, whereas for D′ the splitting behaviour of these two points is
reversed. Thus, both D and D′ have exactly two rational Weierstrass points.

We have shown that there is a hyperelliptic curve over Fq of genus 3 with exactly two
rational Weierstrass points and with more than 1 + q + 4

√
q − 32 rational points.

Now consider the case q ≡ 1 mod 4. If q ≡ 1 mod 16 or q ≡ 13 mod 16, let t be the largest
integer congruent to 2 or 14 modulo 16 that is coprime to q and such that t2 < 4q; if q ≡
5 mod 16 or q ≡ 9 mod 16, let t be the largest integer congruent to 6 or 10 modulo 16 that
is coprime to q and such that t2 < 4q. In both cases we have t> 2

√
q − 16.

Let� := t2 − 4q and write�= F2�0 for a fundamental discriminant�0. Our choice of t
guarantees that �≡ 0 mod 64, so F ≡ 0 mod 4. If we let C−t be the isogeny class of elliptic
curves of trace −t over Fq, then the height h of C−t is at least 2.

Let E be an elliptic curve in C−t of level h − 2, and let E′ be an elliptic curve of height
h − 1 that is 2-isogenous to E. Write E as y2 = x(x − a)(x − b) so that the kernel of the 2-
isogeny to E′ contains the point (0,0). Since E′ has all of its 2-torsion rational, Lemma 4·7
shows that ab is a square, so we can write b = ac2 for some c ∈ Fq. Then the fact that the
other two curves 2-isogenous to E have all of their 2-torsion rational implies that a2(1 − c2)
and a2c2(c2 − 1) are squares, so c2 − 1 is a square.

We compute that one model for E′ is given by

y2 = x
(
x + a(c + 1)2)(x + a(c − 1)2) .

Here, the isogeny E′ → E corresponds to the 2-torsion point (0,0). The other two 2-
isogenous take E′ to curves of level h, which each have exactly one rational point of order 2,
so Lemma 4·7 tells us that the two values 4a2c(c + 1)2 and −4a2c(c − 1)2 are not squares.
This shows that c is not a square.

Now we use the formulae from [HLP00, proposition 4, p. 324] to construct a curve of
genus 2 whose Jacobian is (2,2)-isogenous to E × E′. In particular, we take

α1 := 0, α2 := a, α3 := ac2, β1 := 0, β2 := −a(c + 1)2, β3 := −a(c − 1)2

in [HLP00, proposition 4, p. 324] and we find that the resulting curve C is given by y2 = h,
where

h = 64c7(c2 − 1)8(c2 + 1)3(c2 + 2c − 1)3a21
(

x2 − c2 − 1

4c

)(
x2 + 1

(c + 1)2

)(
x2 + c2

(c − 1)2

)
.

Since the Jacobian of C is isogenous to E2, we have #C(Fq) = 1 + q + 2t> 1 + q +
4
√

q − 32.
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The first of the quadratic factors in the above expression for h is irreducible, because
c2 − 1 is a square but c is not. The other two quadratic factors split, and if we let i denote a
square root of −1 in Fq, then the roots of h are

i

c + 1
,

−i

c + 1
,

ic

c − 1
, and

−ic

c − 1
.

If we replace x with

i(c2 + 2c − 2)x − 2ic(c + 1)

(c + 1)(c2 + 2c − 1)x − 2(c2 − 1)

and rescale y appropriately, we find that C can also be written as y2 = f , where

f = ax(x − 1)

(
x − 4c(c2 − 1)

(c2 + 2c − 1)2

)(
x2 − 4(c + 1)(c2 + 1)

(c2 + 2c − 1)2
x + 4(c + 1)2

(c2 + 2c − 1)2

)
.

Note that the quadratic factor is irreducible, and that the root r := 4c(c2 − 1)/(c2 + 2c − 1)2

is not a square, because c is not a square while c2 − 1 is.
Let g = f /x, let n be a nonsquare element of Fq, let D be the curve y2 = g(x2), and let D′

be the curve y2 = g(nx2). As before, the curves D and D′ are both double covers of C and
the two covers are quadratic twists of one another, so at least one of D and D′ has at least as
many points as C. The two curves are both hyperelliptic of genus 3. And finally, the rational
Weierstrass point (1,0) of C splits into two rational Weierstrass points of D while the rational
Weierstrass point (r,0) does not, whereas for D′ the splitting behaviour of these two points
is reversed. Thus, both D and D′ have exactly two rational Weierstrass points.

We have shown that there is a hyperelliptic curve of genus 3 over Fq with exactly two
rational Weierstrass points and with more than 1 + q + 4

√
q − 32 rational points.

With all of these preparatory results at hand, the proof of Theorem 4·1 for odd q is very
short.

Proof of Theorem 4·1(i). We prove the result by induction on g. The statement is true for
g = 2 and g = 3 by Lemmas 4·8 and 4·9. Now suppose Theorem 4·1(i) holds for all g less
than some integer G> 3. We will show it also holds when g = G.

For convenience’s sake, let us set cq = 5 if q< 512 and cq = 32 if q> 512. Set h = �G/2.
Then h> 1, and we may apply Theorem 4·1(i) to show that for every q, there is a hyper-
elliptic curve C/Fq of genus h with exactly two rational Weierstrass points and with
#C(Fq)> 1 + q + 4

√
q − cq.

If G is odd, we apply Lemma 4·3 to the curve C and find that there is a hyperelliptic
curve D of genus 2h + 1 = G with exactly two rational Weierstrass points and with #D(Fq) ≥
#C(Fq).

If G is even, we apply Lemma 4·5 to the curve C and find that there is a hyperelliptic curve
D of genus 2h = G with exactly two rational Weierstrass points and with #D(Fq) ≥ #C(Fq).

4·2. Characteristic 2.

In this section, we prove Theorem 4·1 for finite fields of characteristic 2. The spirit of
the proof is very similar to the odd characteristic case, but the switch to Artin–Schreier
extensions instead of Kummer extensions requires a few technical modifications. We begin
with some basic observations about hyperelliptic curves in characteristic 2.
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If q is a power of 2 and C is a hyperelliptic curve over Fq, then C has a model of the form
y2 + y = f for a rational function f ∈ Fq(x). Replacing y with y + u for a rational function
u ∈ Fq(x) turns the equation for C into y2 + y = f + u2 + u, and by modifying f in this way
we can assume that all of the poles of f , including the pole at ∞, have odd order. Suppose f
has r poles, with orders d1, . . . , dr. Then the Weierstrass points of C are precisely the points
lying over the poles of f in P

1, and [Sti09, proposition 3·7·8, p.127] shows that the genus g
of C is given by

g = −1 +
r∑

i=1

di + 1

2
.

LEMMA 4·10. Let q be a power of 2 and let C/Fq be a hyperelliptic curve of genus g, so
that C has a model y2 + y = f for a rational function f ∈ Fq(x) all of whose poles have odd
order. Given a ∈ F

×
q and b ∈ Fq, let h = f ((x2 + x + b)/a) and let D be the curve defined by

y2 + y = h. Then:

(i) if f has no pole at infinity, the genus of D is 2g + 1;

(ii) if f has a pole of order d> 1 at infinity, the genus of D is 2g;

(iii) if f has a simple pole at infinity, write f = cx + F for a constant c ∈ F
×
q and a rational

function F with no pole at infinity. Then the genus of D is 2g if a �= c, and is 2g − 1 if
a = c.

Proof. Each finite pole of f , say of order d, gives rise to two finite poles of h, each of
order d, and if f has no pole at infinity then neither does h. If f has a total of r poles, none of
them at infinity, of orders d1, . . . , dr, then h has 2r poles, of orders d1, d1, d2, d2, . . . , dr, dr,
and the genus of D is given by

−1 + 2
r∑

i=1

di + 1

2
= 1 + 2

(
−1 + 2

r∑
i=1

di + 1

2

)
= 1 + 2g .

Suppose f has a pole at infinity of order d. We can write

f = cdxd + cd−1xd−1 + · · · + c1x + F, (4·1)

where the ci are elements in Fq with cd �= 0 and F is a rational function with no pole at
infinity. Then the polar decomposition of h at infinity is

ha = (cd/a
d)x2d + (dcd/a

d)x2d−1 + (lower degree terms) .

If d> 1 we can replace y with y + (
√

cd/ad)xd to find that at infinity the curve D looks
like

y2 + y = (dcd/a
d)x2d−1 + (lower degree terms) .

The contribution of the pole of h at infinity to the genus of D is d, while the contribution of
the pole of f at infinity to the genus of C is (d + 1)/2. Combining this with the contributions
of the finite poles, which behave as above, we find that the genus of D is 2g.

On the other hand, if d = 1 then we have

ha = (c1/a)x2 + (c1/a)x + (lower degree terms) ,
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and by replacing y with y + (
√

c1/a)x we find that at infinity the curve Da looks like

y2 + y = (c1/a +√
c1/a)x + (lower degree terms) .

If a �= c1 then the coefficient of x is nonzero and the contribution of the pole at infinity to the
genus is 1, and we compute as above that the genus of D is 2g. On the other hand, if a = c1

then the pole at infinity can be removed, and there is no contribution to the genus. In this
case we check that the genus of D is 2g − 1.

LEMMA 4·11. Let q be power of 2 and let C/Fq be a hyperelliptic curve of genus g with
fewer than q + 1 rational Weierstrass points. Then there is a hyperelliptic curve D of genus
2g + 1 that is a double cover of C and that has at least as many rational points as does C.

If in addition C has at least two rational Weierstrass points, then D can be chosen to have
at least two rational points.

Remark 4·12. If C/Fq is a hyperelliptic curve with #C(Fq)> q + 1 then C has fewer than
q + 1 rational Weierstrass points.

Proof. Let ϕ be the canonical map from C to P
1. There is at least one point of P1 that does

not ramify in ϕ, and we can pick one such point and choose a coordinate function x on P
1 so

that this point lies at ∞. This means that C has a hyperelliptic model of the form y2 + y = f ,
where f ∈ Fq(x) is a rational function, all of whose poles have odd order, and with no pole
at ∞.

Let n be an element of Fq whose absolute trace — that is, its trace to F2 — is equal to 1.
Consider the two hyperelliptic curves D : y2 + y = f (x2 + x) and D′ : y2 + y = f (x2 + x + n).
By Lemma 4·10, both D and D′ have genus 2g + 1. Also, the obvious double covers D → C
and D′ → C are quadratic twists of one another, and it follows that #D(Fq) + #D′(Fq) =
2#C(Fq). Therefore, one of these two curves has at least as many rational points as does C.

Suppose C has at least two rational Weierstrass points. We can choose our coordinate
function x so that one of these points lies over the point x = 0 of P1, while the other lies
over the point x = n of P1, where n is an element of Fq of absolute trace 1. The Weierstrass
point lying over x = 0 splits into two rational Weierstrass points of D, and the Weierstrass
point lying over x = n splits into two rational Weierstrass points of D′. Therefore, no matter
which of the two curves has at least as many rational points as C, it has at least two rational
Weierstrass points.

LEMMA 4·13. Let q> 2 be a power of 2 and let C/Fq be a hyperelliptic curve of genus
g that has at least two rational Weierstrass points and with #C(Fq)> q. Then there is a
hyperelliptic curve D/Fq of genus 2g that is a double cover of C, that has at least two
rational Weierstrass points, and that satisfies

#D(Fq) ≥ #C(Fq) if #C(Fq)< 2q;

#D(Fq) = 2q − 1 if #C(Fq) = 2q.

Proof. Let ϕ : C → P
1 be the canonical double cover. Suppose C has at least three rational

Weierstrass points. We can choose a coordinate function x on P
1 so that these three points

lie over 0, n, and ∞, where n is an element of Fq of absolute trace 1. If f has a simple pole at
infinity and if the coefficient c1 of x in the polar expansion (4·1) is equal to 1, we can choose
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another element n′ of Fq of absolute trace 1 and then scale x by a factor of n′/n; this has the
effect of replacing n with n′ and of modifying the coefficient c1 so that it is no longer equal
to 1. Thus, we may assume that c1 �= 1.

Consider the two curves D : y2 + y = f (x2 + x) and D′ : y2 + y = f (x2 + x + n). We see
from Lemma 4·10 that both D and D′ have genus 2g, and one of them has at least as many
rational points as does C. Furthermore, the Weierstrass point of C that lies above x = 0 splits
into two rational Weierstrass points on D, while the Weierstrass point of C lying above (n,0)
splits into two rational Weierstrass points on D′. Thus, at least one of D and D′ will satisfy
the conclusion of the lemma.

We can now turn to the case where C has exactly two rational Weierstrass points. This
time, we can choose a coordinate function x on P

1 so that C has a hyperelliptic model of
the form y2 + y = f , where f ∈ Fq(x) is a rational function that has odd-order poles at 0 and
∞ and no other rational poles. If #C(Fq)< 2q, then there must be a rational point of P1 that
does not have a rational point of C lying over it; in this case, we scale x so that this point
becomes the point x = 1 of P1. In particular, this means that f (1) has absolute trace 1. On the
other hand, if #C(Fq) = 2q, then every point of P1(Fq) other than 0 and ∞ splits into two
rational points of C, so f (a) has absolute trace 0 for every a ∈ F

×
q .

Let n be an element of Fq whose absolute trace is 1. For every a ∈ Fq, set ha := f ((x2 +
x)/(a2 + a + n)) and let Da be the curve y2 + y = ha. If the polynomial x2 + x + n + c1 (with
c1 defined in (4·1)) has roots in Fq, we let s0 and s1 be those roots; otherwise, we take s1 = 0
and s2 = 1. We see from Lemma 4·10 that Da has genus 2g for all a ∈ Fq different from s1

and s2.
Let us compute the number of rational points on Da. Let χ : P1(Fq) → {−1, 0, 1} be the

function that takes ∞ to 0 and that takes an element z ∈ Fq to 1 or −1 depending on whether
the absolute trace of z is 0 or 1. We see, for example, that

#C(Fq) = 1 +
∑
z∈Fq

(1 + χ(f (z))) = 1 + q +
∑
z∈Fq

χ(f (z)) ,

just as we had in odd characteristic. Let na be the number of rational points on Da at infinity,
so that na = 1 if Da has a Weierstrass point at infinity and na is either 0 or 2 otherwise.
Arguing as in the odd-characteristic case, we find that

#Da(Fq) = na +
∑
z∈Fq

(1 + χ((a2 + a + n)z))(1 + χ(f (z)))

= na − 1 + #C(Fq) +
∑
z∈Fq

χ((a2 + a + n)z) +
∑
z∈Fq

χ((a2 + a + n)z)χ(f (z))

= na − 1 + #C(Fq) +
∑
z∈Fq

χ((a2 + a + n)z)χ(f (z)) .

Define

Na :=
∑
z∈Fq

χ((a2 + a + n)z)χ(f (z))

so that

#Da(Fq) − na = #C(Fq) − 1 + Na . (4·2)
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Suppose #C(Fq) = 2q, so that χ(f (z)) = 1 for all z ∈ F
×
q . Then for every a ∈ Fq \ {s0, s1}

we have

Na =
∑
z∈Fq

χ((a2 + a + n)z)χ(f (z)) =
∑
z∈F×

q

χ((a2 + a + n)z) = −1 ,

and for such a we also know that na = 1. Thus, for every such a the curve Da has 2q − 1
points, and so satisfies the conditions listed in the lemma.

We are left with the case where #C(Fq)< 2q. We will show that in this case there is an
a ∈ Fq, not equal to s1 or s2, such that Na ≥ 0. Recall that in this case, we normalised f so
that χ(f (1)) = −1.

We compute: ∑
a∈Fq

Na =
∑
a∈Fq

∑
z∈Fq

χ((a2 + a + n)z)χ(f (z))

=
∑
z∈Fq

χ(f (z))
∑
a∈Fq

χ((a2 + a + n)z) .

When z = 0, the interior sum is equal to q. When z = 1, the interior sum is equal to −q.
When z ∈ Fq \ F2, we calculate the interior sum as follows. Let Xz be the genus-0 curve
y2 + y = z(x2 + x + n). Then

1 + q = #Xz(Fq) = 1 +
∑
a∈Fq

(1 + χ((a2 + a + n)z)) = 1 + q +
∑
a∈Fq

χ((a2 + a + n)z) ,

so ∑
a∈Fq

χ((a2 + a + n)z) = 0 .

Therefore, ∑
a∈Fq

Na = qχ(f (0)) − qχ(f (1)) = q · 0 − q · ( − 1) = q .

Now, from (4·2) we find that Na = (#Da(Fq) − na) − (#C(Fq) − 1), so that Na is the dif-
ference between the number of rational points of Da not lying over ∞ and the number of
rational points of C not lying over ∞. Since Da has two rational Weierstrass points not lying
over ∞ we have #Da(Fq) − na ≤ 2q − 2, so Na ≤ 2q − 1 − #C(Fq). Suppose, to obtain a
contradiction, that for every a ∈ Fq other than s1 and s2 we had #Da(Fq)< #C(Fq), so that
Na ≤ −1. Then we would have

q =
∑
a∈Fq

Na = Ns1 + Ns2 +
∑

a∈Fq\{s1,s2}
Na ≤ 4q − 2 − 2#C(Fq) − (q − 2) = 3q − 2#C(Fq)

so that #C(Fq) ≤ q. This contradicts the hypothesis of the lemma. Therefore, there is at least
one value of a for which Da has genus 2g and #Da(Fq) ≥ #C(Fq). We have already seen that
every such Da has three rational Weierstrass points, so we are done.

Lemmas 4·11 and 4·13 give us the machinery with which to build an induction as in the
previous subsection, and once again we are left with the task of producing curves of genus
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2 and 3 with many points to use as base cases. Such curves are provided by the following
lemma.

LEMMA 4·14. Let q be a power of 2 with q> 8. Then for g = 2 and g = 3 there is a
hyperelliptic curve C/Fq of genus g with at least two rational Weierstrass points and with
#C(Fq)> 1 + q + 4

√
q − 12.

Proof. We observe that an ordinary elliptic curve over Fq can be written in the form
y2 + y = x + a/x if and only if it has a rational point of order 4, one such point being (

√
a, 0).

Furthermore, such a curve has a rational point of order 8 if and only if a has absolute trace 0;
in this case, if we write a = b2 + b, then an 8-torsion point is given by ((a4 + a3)1/4, b1/4).

Let t0 and t4 be the largest integers less than or equal to 2
√

q such that 1 + q + t0 ≡
0 mod 8 and 1 + q + t4 ≡ 4 mod 8, so that ti > 2

√
q − 8 for both values of i and ti > 2

√
q −

4 for one value of i. For i = 0 and i = 4, let Ei be an ordinary elliptic curve over Fq with trace
ti. Then we can write the Ei in the form y2 + y = x + ai/x, where a0 has absolute trace 0 and
a4 has absolute trace 1.

Let C be the hyperelliptic curve

y2 + y =
√

a0a4

a0 + a4
x + a0 + a4

x
+ a0 + a4

x + 1
. (4·3)

Clearly C has three rational Weierstrass points. Also, if we set z = y + √
ai/(a0 + a4)x,

then

z2 + z = ai

a0 + a4
(x2 + x) + a0 + a4

x2 + x
,

and the quotient of this curve by the involution that sends (x,z) to (x + 1, z) is clearly

z2 + z = ai

a0 + a4
w + a0 + a4

w
,

which we check is isomorphic to Ei. Therefore JacC is isogenous to E0 × E4, so #C(Fq) =
1 + q + t0 + t4 > 1 + q + 4

√
q − 12.

Now let D be the double cover of C obtained by adjoining a root of

u2 + u = a0 + a4

x
(4·4)

to the function field of C. Combining equations (4·3) and (4·4) and writing v = y + u, we
find that D can be written in the form

v2 + v =
√

a0a4

u2 + u
+ a2

0 + a2
4

u2 + u + a0 + a4
+ a0 + a4 . (4·5)

Because the absolute trace of a0 + a4 is 1, the quadratic twist D′ → C of the double cover
D → C can be given by

v2 + v =
√

a0a4

u2 + u + a0 + a4
+ a2

0 + a2
4

u2 + u
+ a0 + a4 . (4·6)

One of the two curves D and D′ will have at least as many points as C, and D and D′ each
have exactly two rational Weierstrass points: On both curves, the points with u = 0 and u = 1
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are Weierstrass points. Thus, one of D and D′ will be a hyperelliptic curve of genus 3 with
the desired properties.

Proof of Theorem 4·1 (ii). For q = 2, 4 and 8, we need to show that there are hyperelliptic
curves of every genus g> 1 with at least 4, 9 and 16 points, respectively. For q = 2 and
q = 4 this follows from Lemma 4·15 below. For q = 8, Lemma 4·15 gives us the desired
hyperelliptic curve when g ≥ 4, so we are left to find examples of genus 2 and genus 3.
These are provided by the genus-2 curve y2 + y = x5 + x3 and the genus-3 curve y2 + y =
rx7, where r satisfies r3 + r + 1 = 0; both of these curves have 17 rational points.

Now assume that q> 8. We prove the result by induction on g. The statement is true for
g = 2 and g = 3 by Lemma 4·14. Now suppose Theorem 4·1(ii) holds for all g less than
some integer G> 3. We will show it also holds when g = G.

Set h = �G/2. Then h> 1, and we may apply Theorem 4·1(ii) to show that for every q,
there is a hyperelliptic curve C/Fq of genus h with at least two rational Weierstrass points
and with #C(Fq)> 1 + q + 4

√
q − 12.

If G is odd, we apply Lemma 4·11 to the curve C and find that there is a hyperelliptic
curve D of genus 2h + 1 = G with at least two rational Weierstrass points and with #D(Fq) ≥
#C(Fq).

If G is even, we apply Lemma 4·13 to the curve C and find that there is a hyperelliptic
curve D of genus 2h = G with at least two rational Weierstrass points and with #D(Fq) ≥
#C(Fq) or with #D(Fq) = 2q − 1.

LEMMA 4·15. Let q> 1 be a power of 2 and let g be an integer with g ≥ q/2. Then there
is a hyperelliptic curve of genus g over Fq having 2q + 1 rational points.

Proof. Consider the function Fq → Fq that sends a to a2g+1. By Lagrange interpola-
tion, there is a polynomial f ∈ Fq[x] of degree at most q − 1 that agrees with this function.
Therefore, the polynomial x2g+1 + f has degree 2g + 1 and evaluates to 0 for every x ∈ Fq.
Therefore the curve y2 + y = x2g+1 + f has 2q + 1 rational points and has genus g.

4·3. Remarks on constructing examples

We mentioned earlier that our arguments in this section suggest an algorithm for con-
structing the curves whose existence is asserted by Theorem 4·1. In particular, Lemmas 4·8,
4·9 and 4·14 provide explicit ways of finding the base curves of genus 2 and 3 with which
to start the construction; these lemmas require that we find an elliptic curve over Fq with a
certain specific trace and with all of its 2-torsion points rational. In general it is a difficult
problem to find an elliptic curve over a given finite field with a given number of points, and
the best general algorithm for doing so is essentially to pick elliptic curves at random until
one finds one with the desired order. In our case, the discriminant of the endomorphism ring
of the curves we want is smaller than average — it’s O(

√
q) instead of O(q) — so we might

choose to use the Hilbert class polynomial method [Sut11] instead.
Once we have a starting curve, we need to recursively construct curves in the tower leading

to the desired genus. Lemmas 4·3 and 4·11 tell us how to quickly produce a curve of genus
2g + 1 from a curve of genus g, with the new curve having at least as many points as the old;
the work required is simply that of counting points on a single hyperelliptic curve of genus
2g + 1. It is more difficult to produce a curve of genus 2g from a curve of genus g, with the
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new curve having at least as many points as the old. Lemmas 4·5 and 4·13 tell us that there
is at least one curve in an explicit one-parameter family with the desired properties, but in
the worst case we might have to count points on essentially all curves in the family before
finding one that works. Heuristically, though, we expect to find a good curve after only a
few tries.

In the worst case, then, we might need to count points on as many as O(q log g) hyperel-
liptic curves over Fq in order to find a curve of genus g over Fq with close to q + 1 + 4

√
q

points. In practice, we find that many fewer steps are required, and we expect the algorithm
sketched above to require counting points on O( log g) hyperelliptic curves, once we have
found the base curve of genus 2 or 3.

We might compare this heuristic complexity to that of the naïve method of picking hyper-
elliptic curves of genus g over Fq at random until we find one with close to q + 1 ± 4

√
q

points. Essentially, the naïve method requires waiting for a four-sigma event to occur, so
we might expect to try about 15,000 curves on average before finding one with more than
q + 1 + 4

√
q points.
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