SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed Prediction using Road Topographical Features - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed Prediction using Road Topographical Features

Résumé

Although traffic is one of the massively collected data, it is often only available for specific regions. One concern is that, although there are studies that give good results for these data, the data from these regions may not be sufficiently representative to describe all the traffic patterns in the rest of the world. In quest of addressing this concern, we propose a speed prediction method that is independent of large historical speed data. To predict a vehicle's speed, we use the trajectory road topographical features to fit a Shared Weight Multilayer Perceptron learning model. Our results show significant improvement, both qualitative and quantitative, over standard regression analysis. Moreover, the proposed framework sheds new light on the way to design new approaches for traffic analysis.
Fichier principal
Vignette du fichier
Main.pdf (778.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04217918 , version 1 (01-10-2023)

Identifiants

Citer

Sarah Almeida Carneiro, Giovanni Chierchia, Jean Charléty, Aurélie Chataignon, Laurent Najman. SWMLP: Shared Weight Multilayer Perceptron for Car Trajectory Speed Prediction using Road Topographical Features. International Conference on Models and Technologies for Intelligent Transportation Systems, Jun 2023, Nice, France. pp.1-6, ⟨10.1109/MT-ITS56129.2023.10241394⟩. ⟨hal-04217918⟩
52 Consultations
69 Téléchargements

Altmetric

Partager

More