A model-free approach to fingertip slip and disturbance detection for grasp stability inference - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

A model-free approach to fingertip slip and disturbance detection for grasp stability inference

Résumé

Robotic capacities in object manipulation are incomparable to those of humans. Besides years of learning, humans rely heavily on the richness of information from physical interaction with the environment. In particular, tactile sensing is crucial in providing such rich feedback. Despite its potential contributions to robotic manipulation, tactile sensing is less exploited; mainly due to the complexity of the time series provided by tactile sensors. In this work, we propose a method for assessing grasp stability using tactile sensing. More specifically, we propose a methodology to extract task-relevant features and design efficient classifiers to detect object slippage with respect to individual fingertips. We compare two classification models: support vector machine and logistic regression. We use highly sensitive Uskin tactile sensors mounted on an Allegro hand to test and validate our method. Our results demonstrate that the proposed method is effective in slippage detection in an online fashion.
Fichier principal
Vignette du fichier
root.pdf (5.77 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04216868 , version 1 (21-11-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Dounia Kitouni, Mahdi Khoramshahi, Veronique Perdereau. A model-free approach to fingertip slip and disturbance detection for grasp stability inference. IEEE International Conference on Development and Learning 2023 (ICDL), Nov 2023, Macau, China. ⟨hal-04216868⟩
33 Consultations
63 Téléchargements

Altmetric

Partager

More