DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSIONS - Archive ouverte HAL
Article Dans Une Revue Bulletin of the Australian Mathematical Society Année : 2022

DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSIONS

Résumé

Abstract Let $[t]$ be the integral part of the real number t . We study the distribution of the elements of the set $\mathcal {S}(x) := \{[{x}/{n}] : 1\leqslant n\leqslant x\}$ in the arithmetical progression $\{a+dq\}_{d\geqslant 0}$ . We give an asymptotic formula $$ \begin{align*} S(x; q, a) := \sum_{\substack{m\in \mathcal{S}(x)\\ m\equiv a \pmod q}} 1 = \frac{2\sqrt{x}}{q} + O((x/q)^{1/3}\log x), \end{align*} $$ which holds uniformly for $x\geqslant 3$ , $1\leqslant q\leqslant x^{1/4}/(\log x)^{3/2}$ and $1\leqslant a\leqslant q$ , where the implied constant is absolute. The special case $S(x; q, q)$ confirms a recent numerical test of Heyman [‘Cardinality of a floor function set’, Integers 19 (2019), Article no. A67].
Fichier non déposé

Dates et versions

hal-04215851 , version 1 (22-09-2023)

Identifiants

Citer

Yahui Yu, Jie Wu. DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSIONS. Bulletin of the Australian Mathematical Society, 2022, 106 (3), pp.419-424. ⟨10.1017/S000497272200017X⟩. ⟨hal-04215851⟩
30 Consultations
0 Téléchargements

Altmetric

Partager

More