Upgrading MLSI to LSI for reversible Markov chains - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2023

Upgrading MLSI to LSI for reversible Markov chains

Résumé

For reversible Markov chains on finite state spaces, we show that the modified log-Sobolev inequality (MLSI) can be upgraded to a log-Sobolev inequality (LSI) at the surprisingly low cost of degrading the associated constant by log(1/p), where p is the minimum non-zero transition probability. We illustrate this by providing the first log-Sobolev estimate for Zero-Range processes on arbitrary graphs. As another application, we determine the modified log-Sobolev constant of the Lamplighter chain on all bounded-degree graphs, and use it to provide negative answers to two open questions by Montenegro and Tetali (2006) and Hermon and Peres (2018). Our proof builds upon the regularization trick' recently introduced by the last two authors.
Fichier principal
Vignette du fichier
2212.06028.pdf (368.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04215307 , version 1 (22-09-2023)

Identifiants

Citer

Justin Salez, Konstantin Tikhomirov, Pierre Youssef. Upgrading MLSI to LSI for reversible Markov chains. Journal of Functional Analysis, 2023, 285 (9), pp.110076. ⟨10.1016/j.jfa.2023.110076⟩. ⟨hal-04215307⟩
31 Consultations
21 Téléchargements

Altmetric

Partager

More