On the volume of the Minkowski sum of zonoids - Archive ouverte HAL
Article Dans Une Revue Journal of Functional Analysis Année : 2022

On the volume of the Minkowski sum of zonoids

Résumé

We explore some inequalities in convex geometry restricted to the class of zonoids. We show the equivalence, in the class of zonoids, between a local Alexandrov-Fenchel inequality, a local Loomis-Whitney inequality, the log-submodularity of volume, and the Dembo-Cover-Thomas conjecture on the monotonicity of the ratio of volume to the surface area. In addition to these equivalences, we confirm these conjectures in ${\mathbb R}^3$ and we establish an improved inequality in ${\mathbb R^2}$. Along the way, we give a negative answer to a question of Adam Marcus regarding the roots of the Steiner polynomial of zonoids. We also investigate analogous questions in the $L_p$-Brunn-Minkowski theory, and in particular, we confirm all of the above conjectures in the case $p=2$, in any dimension.
Fichier principal
Vignette du fichier
2206.02123v1.pdf (388.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04214832 , version 1 (18-12-2024)

Identifiants

Citer

Matthieu Fradelizi, Mokshay Madiman, Mathieu Meyer, Artem Zvavitch. On the volume of the Minkowski sum of zonoids. Journal of Functional Analysis, 2022, 286 (3), pp.110247. ⟨10.1016/j.jfa.2023.110247⟩. ⟨hal-04214832⟩
31 Consultations
0 Téléchargements

Altmetric

Partager

More