The supersingular endomorphism ring problem given one endomorphism - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

The supersingular endomorphism ring problem given one endomorphism

Résumé

Given a supersingular elliptic curve E and a non-scalar endomorphism α of E, we prove that the endomorphism ring of E can be computed in classical time about disc(Z[α])^1/4 , and in quantum subexponential time, assuming the generalised Riemann hypothesis. Previous results either had higher complexities, or relied on heuristic assumptions. Along the way, we prove that the Primitivisation problem can be solved in polynomial time (a problem previously believed to be hard), and we prove that the action of smooth ideals on oriented elliptic curves can be computed in polynomial time (previous results of this form required the ideal to be powersmooth, i.e., not divisible by any large prime power). Following the attacks on SIDH, isogenies in high dimension are a central ingredient of our results.
Fichier principal
Vignette du fichier
paper.pdf (478.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04212227 , version 1 (20-09-2023)
hal-04212227 , version 2 (22-09-2023)

Licence

Identifiants

Citer

Arthur Herlédan Le Merdy, Benjamin Wesolowski. The supersingular endomorphism ring problem given one endomorphism. 2023. ⟨hal-04212227v2⟩
51 Consultations
41 Téléchargements

Altmetric

Partager

More