T-type channel blockade impairs long-term potentiation at the parallel fiber–Purkinje cell synapse and cerebellar learning
Résumé
Significance T-type calcium channels are present in the spines of a number of principal neurons. In absence of specific antagonists, their function has been difficult to elucidate. At the cerebellar synapse between parallel fiber (PF) and Purkinje cell (PC), postsynaptic Ca 2+ signaling is not the result of ionotropic glutamatergic receptor activation, while T-type Ca V 3.1 channels are abundantly expressed in PCs. We show that they are required for long-term potentiation but not for long-term depression at PF–PC synapses. Because plasticity at this site has long been proposed to be important for cerebellar forms of motor learning, we have checked the behavioral incidence of acute or chronic blockade of T-type channels. In this condition, we show impairment of demanding cerebellar motor learning tasks.