A new discretization of the Euler equation via the finite operator theory - Archive ouverte HAL
Article Dans Une Revue Open Communications in Nonlinear Mathematical Physics Année : 2024

A new discretization of the Euler equation via the finite operator theory

Résumé

We propose a novel discretization procedure for the classical Euler equation, based on the theory of Galois differential algebras and the finite operator calculus developed by G.C. Rota and collaborators. This procedure allows us to define algorithmically a new discrete model which inherits from the continuous Euler equation a class of exact solutions.
Fichier principal
Vignette du fichier
OCNMP_RT_finale_submitted_21_jan_2024.pdf (121.47 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04209920 , version 1 (18-09-2023)
hal-04209920 , version 2 (22-01-2024)

Identifiants

  • HAL Id : hal-04209920 , version 2

Citer

Miguel A. Rodríguez, Piergiulio Tempesta. A new discretization of the Euler equation via the finite operator theory. Open Communications in Nonlinear Mathematical Physics, 2024, Special Issue in Memory of Decio Levi. ⟨hal-04209920v2⟩
37 Consultations
210 Téléchargements

Partager

More