Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus - Archive ouverte HAL
Article Dans Une Revue G3 Année : 2019

Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus

Maren Wellenreuther
  • Fonction : Auteur
Denham Cook
  • Fonction : Auteur
Peter A. Ritchie
  • Fonction : Auteur
Louis Bernatchez
  • Fonction : Auteur

Résumé

Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.

Dates et versions

hal-04202247 , version 1 (11-09-2023)

Identifiants

Citer

Maren Wellenreuther, Jeremy Le Luyer, Denham Cook, Peter A. Ritchie, Louis Bernatchez. Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3, 2019, 9 (1), pp.105-116. ⟨10.1534/g3.118.200647⟩. ⟨hal-04202247⟩

Collections

UPF
6 Consultations
0 Téléchargements

Altmetric

Partager

More