Almost sure scattering at mass regularity for radial Schrödinger equations - Archive ouverte HAL
Article Dans Une Revue Nonlinearity Année : 2022

Almost sure scattering at mass regularity for radial Schrödinger equations

Résumé

Abstract We consider the radial nonlinear Schrödinger equation i ∂ t u + Δ u = | u | p −1 u in dimension d ⩾ 2 for p ∈ 1 , 1 + 4 d and construct a natural Gaussian measure μ 0 which support is almost L rad 2 and such that μ 0 —almost every initial data gives rise to a unique global solution. Furthermore, for p > 1 + 2 d and d ⩽ 10, the solutions constructed scatter in a space which is almost L 2 . This paper can be viewed as a higher dimensional counterpart of the work of Burq and Thomann (2020 arXiv: 2012.13571 ), in the radial case.
Fichier principal
Vignette du fichier
scatteringSchrodingerMass.pdf (617.68 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04196599 , version 1 (05-09-2023)

Identifiants

Citer

Mickaël Latocca. Almost sure scattering at mass regularity for radial Schrödinger equations. Nonlinearity, 2022, 35 (10), pp.5311-5356. ⟨10.1088/1361-6544/ac8aed⟩. ⟨hal-04196599⟩
8 Consultations
15 Téléchargements

Altmetric

Partager

More