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ALMOST SURE SCATTERING AT MASS REGULARITY FOR RADIAL
SCHRÖDINGER EQUATIONS

MICKAËL LATOCCA

Abstract. We consider the radial nonlinear Schrödinger equation i∂tu + ∆u = |u|p−1u in
dimension d > 2 for p ∈

[
1, 1 + 4

d

]
and construct a natural Gaussian measure µ which support

is almost L2
rad and such that µ - almost every initial data gives rise to a unique global solution.

Furthermore, for p > 1 + 2
d
the solutions constructed scatter in a space which is almost L2.

This paper can be viewed as the higher dimensional counterpart of the work of Burq and
Thomann [BT20], in the radial case.
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1. Introduction

We consider the Cauchy problem and the long time dynamics for the semilinear Schrödinger
equation:

(NLS)
{
i∂tu+ ∆u = |u|p−1u
u(0) = u0 ∈ Hs(Rd) ,

where p > 1 need not be an integer, s ∈ R and d > 2. (NLS) is known to be invariant under the
scaling symmetry:

u(t, x) 7→ uλ(s, y) := λ
2
p−1u(λ2s, λy),

which is such that ‖uλ‖Ḣs = λs(d,p)‖u‖Ḣs with s(d, p) := d
2−

2
p−1 , the critical regularity threshold

and where Ḣs stands for the homogeneous Sobolev space. (NLS) also enjoys several formal
conservation laws, the most important being the conservation of the mass and the energy, that
is the quantities

M(t) := ‖u(t)‖2L2 and E(t) := 1
2‖∇u(t)‖2L2 + 1

p+ 1‖u(t)‖p+1
Lp+1

are conserved under the flow of (NLS).
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When s < s(d, p), local well-posedness and even global well-posedness are expected and
when s > s(d, p) an ill-posedness behaviour is to be expected. This article deals with the
exponent range p 6 1+ 4

d and regularity s = 0, i.e., the mass regularity. Remark that s(d, 1+ 4
d) =

0. We gather below some known results concerning this problem. We recall that a solution u
to (NLS) is said to scatter inHs (which stands for the non-homogeneous Sobolev spaces) forward
in time (resp. backward in time) if there exists u+ ∈ Hs (resp. u−) such that:

‖u(t)− eit∆u±‖Hs −→
t→±∞

0 .

This expresses that even if u is the solution of a nonlinear equation, its long time behaviour will
eventually be close the linear evolution of some state u±, which may not always be the initial
data u0.

1.1. Scattering for the nonlinear Schrödinger equations. The literature pertaining to the
long time behaviour of (NLS) is broad and we do not claim to be exhaustive. For an introduction
to the deterministic theory of the mass sub-critical and critical nonlinear Schrödinger equations
we refer to [Tao06, Caz03]. The following theorem gathers some of the most important results
known in the scattering theory of (NLS). We also refer to [Nak99, Dod16c] for more scattering
results.

Theorem 1.1 (Deterministic theory). Let p > 1 and d > 2. Then:

(i) For p ∈
[
1, 1 + 4

d

]
the Cauchy problem for (NLS) is globally well-posed in L2(Rd) and if

p > 1 + 4
d the Cauchy problem is ill-posed in L2.

(ii) For p 6 1 + 2
d and for every u0 ∈ L2, the solutions do not scatter in L2, neither forward

nor backward in time.
(iii) For d > 2, p ∈

(
1 + 2

d , 1 + 4
d−2

)
and initial data in H1 scattering in L2 holds.

(iv) For d > 2, p = 1 + 4
d and radial initial data in L2, scattering holds in L2.

Proof. (i) is the standard local well-posedness result when p < 1 + 4
d , see [Tao06], Chapter 3

and globality comes from the conservation of mass. In the critical case the global theory is
more involved, see [Dod16c]. The ill-posedness part is proven in [CCT03, AC09]. (ii) is the
content of [Bar84]. For (iii) see [TY84] and for (iv) see [TVZ07]. For dimension 2 see [Dod16a,
Dod16b]. �

In order to address this gap between the previous results and the scaling heuristic, one way
is to study the Cauchy problem for (NLS) with random initial data. The theory of dispersive
equations with random initial data can be tracked back at least to the pioneer work of Bour-
gain [Bou94, Bou96] and the use of formal invariant measures. See also [BT08a, BT08b] for
an approach without invariant measure construction or [Tzv15, OT17, OT, OST17] for an ap-
proach with quasi-invariant measure constructions. A key feature of the random data dispersive
equation theory is that it allows for proving well-posedness results below the scaling for critical
problems.

In dimension 1 the gap in the theory of mass regularity scattering for (NLS) was partially
closed in [BTT13]. More precisely the authors proved almost sure global existence and scattering
in L2 with respect to a measure which typical regularity is L2, as long as p > 5 = 1+ 4

d and thus
missed the range (3, 5). Their method is based on the use of the lens transform (see Appendix B
for details) which transforms the scattering problem for (NLS) into a scattering problem for
an harmonic oscillator version of the nonlinear Schrödinger equation, which turns out to be
more amenable. The gap was fully closed in [BT20] by studying quasi-invariant measures in a
quantified manner. In both cases such results are interesting in the sense that they give large
data scattering, without assuming decay at infinity.
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In dimension d = 2, the counterpart of [BTT13] in the radial case is established in [Den12].
See also [PRT14, Tho09] where almost sure scattering in higher dimension was studied (although
a smallness assumption is required).

Note that in another setting, scattering for the nonlinear wave equations at energy regularity
has been studied, and we refer to the works [DLM19] and also also [Bri18b, Bri18a].

1.2. Notation. We adopt widely used notations such as bxc for the lower integer part of a real
number x and 〈x〉 := (1 + |x|2)

1
2 . We denote ⊗ the tensor product (of functions, spaces or

measures) and we write [A,B] = AB − BA the commutator of A and B. The letters Ω and P
will always denote a probability space and its associate probability measure with an expectation
denoted by E.

For inequalities we often write A . B when there exists a universal constant C > 0 such that
A 6 CB. In some cases we need to track explicitly the dependence of the constant C upon
other constants and we denote by A .a B to indicate that the implicit constant depends on a.
In other cases we use the notation C for a constant which can change from one line to another,
and write C(a, b) to explicitly recall the dependence of C on other parameters. We write A ∼ B
if A . B and A & B.
Dt is defined as −i∂t. S and S ′ respectively stand for the space of Schwartz functions and

its dual the space of tempered distributions. The index rad means radial, so for example Srad
stands for the radially symmetric functions of S. The Lebesgue spaces are denoted by Lp and for
p ∈ [1,∞] we set p′ such that 1

p + 1
p′ = 1. If X is a Banach space then LpTX serves as a shortcut

for Lp((0, T ), X) and Lpw denotes the Lebesgue space with weight w. The usual Sobolev spaces
are denoted by Hs = W s,2 where W s,p = {u ∈ S ′, (id−∆)

s
2 ∈ Lp}. When id−∆ is replaced by

H, the harmonic oscillator defined in Section 2, these spaces are called the harmonic Sobolev
spaces and written Hs and Ws,p. The Hölder space C0,α(I,X), for α ∈ (0, 1), is defined as the
set of functions continuous functions on X that satisfy

‖f‖C0,α := ‖f‖L∞(I,X) + sup
t6=s∈I

‖f(t)− f(s)‖X
|t− s|α

<∞ .

Smooth Littlewood-Paley projectors at frequencyN = 2n are denoted by PN and we set SN :=∑n
m=0 P2m and P>N = id−SN .
If an, bn are real independent standard Gaussian random variables then gn := an+ibn is called

a complex Gaussian random variable.

1.3. Main results. This section presents the main results we shall prove. Precise definitions
for the space X0 and the measure µ will be given in Section 2. At this stage one can picture
X0 as the radially symmetric almost L2 functions and µ a probability measure whose support
is X0.

Keeping in mind Theorem 1.1 (ii), when p 6 1 + 2
d there is no scattering in L2 and thus

even in the probabilistic approach there is no possible scattering result. It is however possible
to prove a weaker statement, which we refer to as weak scattering and is the content of our first
result.

Theorem 1.2 (Almost-sure global existence and weak scattering). Let d > 2 and p ∈
(
1, 1 + 4

d

]
.

There exists σ ∈ (0, 1
2) such that for µ-almost every initial data u0 ∈ X0, there exists a unique

global solution u to (NLS) in the space

eit∆u0 + C(R,Hσ(Rd)) .

Furthermore this solution satisfies the bound

‖u(s)‖Lp+1 6 C(u0) log
1
2 (1 + |s|) ,
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for s ∈ R. Moreover there exist constants C, c > 0 such that

µ(u0 ∈ X0, C(u0) > λ) 6 Ce−cλ2
.

For p ∈
(
1 + 2

d , 1 + 4
d

]
and d 6 24 scattering holds in L2 for almost every radial initial data

at mass regularity. More precisely we define the following regularity parameter:

(1.1) σ(p, d) :=
{ 1

2 if p 6 1 + 3
d−2

2− d−2
2 (p− 1) if p > 3

d−2 .

Theorem 1.3 (Almost sure scattering at mass regularity). Let d ∈ {2, . . . , 24} and p ∈(
1 + 2

d , 1 + 4
d

)
.

(i) For every σ ∈ (0, σ(p, d)) and µ-almost every initial data there exists a unique global
solution to (NLS) satisfying

u(s)− eis∆u0 ∈ C(R, Hσ) .

(ii) The solutions constructed scatter at infinity, in L2. More precisely, there exist σ ∈
(0, σ(p, d)) and κ > 0 only depending on p and d such that for µ-almost every u0 there
exist u± ∈ Hσ such that the corresponding solution constructed in (i) satisfies

(1.2) ‖u(s)− eis∆(u0 + u±)‖Hσ . C(u0)|s|−κ −→
s→±∞

0 ,

and also

(1.3) ‖e−is∆u(s)− (u0 + u±)‖Hσ . C(u0)|s|−κ −→
s→±∞

0 .

In both cases there exist numerical constants C, c > 0 such that µ(C(u0) > λ) 6 Ce−cλ.

Remark 1.4. Since the corresponding measure µ will be such supported by the radial functions
of
⋂
σ>0H−σrad we see that this result is radial in nature. We also emphasis that the convergence

rate κ can be made explicit by following the computations line by line.

Remark 1.5. First note that in dimension d = 2, the case p = 3 has been treated in [Den12].
Similarly in dimension d > 2 the endpoint case p = 1+ 4

d is an adaptation of the proof in [Den12]
and we do not treat this case in view of the deterministic result [TVZ07]. Then we assume that
p ∈

(
1 + 2

d , 1 + 4
d

)
.

Remark 1.6. As the proof will make it clear, the obstruction to generalise to dimensions higher
than 24 is contained in the establishment of a powerful enough almost-sure local Cauchy theory.
We did not put much effort into developing such a local theory in higher space dimensions and
we believe that this is possible, using refinements of the local theory in Bourgain’s type spaces,
building on bilinear estimates.

Remark 1.7. This result is not of small data type. The measure µ indeed satisfies that for p > 2
arbitrarily close to 2 and every R > 0, µ(u ∈ X0, ‖u‖Lp > R) > 0, see Section 2 for a proof.

Finally, we highlight that some algebraic computations were carried out using a computer
algebra software.

1.4. Strategy of the proof and organisation of the paper. The following paragraphs
outline the proof of the main results. There are three main features that we need to address:
assuming a global theory, how can one prove scattering? How can one construct a good local
theory? How to extend this local theory into a powerful enough global theory?
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1.4.1. Proving scattering. Assume that one has access to an almost-sure local existence theory
for (NLS), even a global theory in L2.

In order to deal with the long-time behaviour of the solutions u we write, thanks to Duhamel’s
formula:

u(s) = eis∆u0 − i
∫ s

0
ei(d−s

′))∆
(
|u(s′)|p−1u(s′)

)
ds′ ,

so that in order to prove the existence of u+ we only need to prove that the integral∫ s

0
ei(s−s

′)∆
(
|u(s′)|p−1u(s′)

)
ds′

converges, which is achieved by proving that this integral actually converges absolutely. From
there we can see that a priori bounds on u in Lrx spaces may be needed to carry such a program.
Such bounds can be obtained using Sobolev embeddings if u is more regular. This heuristic
suggests that we can try to construct a better local theory in a probabilistic setting, building
on some stochastic smoothing. We then will need to extend the theory to a global one.

1.4.2. Almost-sure local well-posedness. The standard method to prove local well-posedness is to
implement a fixed-point argument in some Banach spaces. In the context of dispersive equations,
Strichartz estimates allow for achieving such a goal. Heuristically, Strichartz estimates tell us
that if u0 ∈ Hs then the free evolution uL(s) = eis∆u0 may not be smoother than u0 but however
exhibits some gain in space-time integrability, from which we access to a wider range of (p, q)
such that bounds of the form ‖uL‖LpTLqx . ‖u0‖L2 hold. The advantage of working with random
data is that improving the Lp integrability of a random L2 function (on the torus, for example)
is essentially granted by a result which appeared in the work of Paley-Zygmund. See [BT08a]
Appendix A for a proof.

Theorem 1.8 (Kolmogorov-Paley-Zygmund). Let (cn)n∈Z an `2 sequence. Then if (gn)n is a
sequence of identically distributed centred and normalised complex Gaussian variables we have∥∥∥∥∥∥

∑
n∈Z

cngn

∥∥∥∥∥∥
LpΩ

.
√
p‖(cn)‖2` .

Using this result we can prove a probabilistic Strichartz estimate which improves the classical
one. Take u0 a random initial data, then with the previous remarks we can easily control the
space-time norms of uL(s), so we seek solutions of the form u(s) = uL(s) + w(s) where w is
deterministic and can be taken in a smoother space, for example w ∈ Hs for some s > 0.
Formally w is the solution of the fixed point problem Φ(w) = w where

Φ(w) = i

∫ s

0
ei(s−s

′)∆ ((uL(s) + w(s))p)

and thanks to the gain in controlling the space time norms of uL we can expect to solve this
problem in Hs. For an illustration of the method see [BT08a]. For probabilistic well-posedness
of (NLS) below the scaling regularity see [BOP15].

In our context we will have to take care of the fact that since we will work with random initial
data slightly below L2 we will not really access to all the range of Strichartz estimates. These
statements are made precise by Lemma 2.4. Establishing such a good local theory is the content
of Proposition 3.3.

1.4.3. The globalisation argument. Once one has a good local well-posedness theory, there exists
a general globalisation argument which can be traced back at least to Bourgain [Bou94]. In order
to clarify the arguments of Corollary 5.6 and Corollary 5.9 below we explain the argument in
a simpler setting, the invariant measure setting. One wants to achieve an almost sure global
theory. To this end we first remark that thanks to the Borel-Cantelli lemma it is sufficient to
prove that for every δ > 0 and every T > 0 there exists a set Gδ,T such that µ(X \ Gδ) 6 δ
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and that for every initial data in Gδ,T we have existence on [0, T ]. The requirements for the
argument to work are roughly the following:

(i) A local well-posedness theory of the following flavour: for initial data at time t0 of size
(in a space X) less than λ there exists a solution on [t0, t0 + τ ] with τ ∼ λ−κ, in a
space X.

(ii) An invariant measure µ, that is if φt denotes the flow of the equation, µ(A) = µ(φ−tA)
for all t > 0 and every measurable set A, at least formally.

We further assume that µ(u0, ‖u0‖X > λ) . e−cλ
2 , as this will always be the case in the

following.
Let λ > 0 to be chosen later. Let Gλ be the set of good initial data u0 which give rise

to solutions defined on [0, T ] and such that ‖u(t)‖X 6 2λ for every t 6 T . Let also Aλ :=
{u0, ‖u0‖ 6 λ}. Choose τ small enough (which amounts to enlarging λ) so that the local theory
constructed implies that a solution on [nτ, (n+ 1)τ ] does not grow more than doubling its size.
Then we immediately see that

bT
τ
c⋂

n=0
φ−1
nτ (Aλ) ⊂ Gλ .

Taking the complementary we see that

{u0 /∈ Gλ} ⊂
bT
τ
c⋃

n=0
φ−1
nτ (X \Aλ) ,

and taking into account the expression of τ and the fact that µ is invariant under the flow this
gives

µ(X \Gλ) 6 CTλκe−cλ2
,

which is smaller than δ for λ ∼ log
1
2
(
T
δ

)
.

From there we obtain the global existence and a logarithmic bound for ‖u(t)‖X . However let
us recall that there is no non-trivial invariant measure for the linear Schrödinger equation, or
the nonlinear equation in presence of scattering in L2.

Proposition 1.9. Let d > 2. Then,
(1) For σ ∈ R the only measure supported in Hσ which is invariant by the flow of the linear

Schrödinger equation i∂su+ ∆yu = 0 with initial condition u(0) = u0 ∈ Hσ(Rd) is δ0.
(2) Let p such that scattering holds in L2 for solutions of (NLS). Then for any σ ∈ R the

only measure supported in L2 which is invariant by the flow of (NLS) is δ0.

Proof. We refer to [BT20] where a proof is given in dimension 1. The proof in dimension d is a
straightforward adaptation. �

In order to overcome this difficulty, the authors in [BTT13] use the lens transform (see Ap-
pendix B) to transform solutions of (NLS) with time interval R to solutions of

(HNLS)
{
i∂tv −Hv = cos(2t)

d
2 (p−1)−2|v|p−1v

v(0) = v0 ∈ Hs ,

with time interval [−π
4 ,

π
4 ] where H := −∆ + |x|2 is the harmonic oscillator, and Hs stands for

the associate Sobolev spaces. (HNLS) admits quasi-invariant measures with quantified evolution
bounds, see Proposition 4.3, which makes it possible to use a similar globalisation argument to
the one presented. For this reason most of this paper studies properties of (HNLS), and we will
eventually get back to (NLS) using the lens transform in Section 6.

For the global theory, the main difference when compared to [BT20] lies in the proof of
Lemma 5.7. Let us recall that the proof in [BT20] uses:
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(i) A pointwise bound in Lp+1 with large probability for the solutions.
(ii) A Sobolev embedding to control the Lp+1 norm variation by the Hs norm variation,

controlled by the local theory.
In dimension d > 3 such a program would not yield the full proof of Theorem 1.3, due to the use
of the Sobolev embedding which would only yield a result for p 6 1 + 2

d−1 . Instead we control
the variation of the Lp+1 norm, writing:

(1.4) v(t′) = e−i(t
′−tn)Hv(tn)− i

∫ t′

tn
e−i(t

′−s)H
(
|v(s)|p−1v(s)

)
ds .

for t′ in some interval [tn, tn+1]. The first term is controlled using linear methods. For the
second term we need to control its L∞Lp+1 norm, which is not always Schrödinger admissible
(terminology defined in Section 3). Instead we use the dispersive estimate L

p+1
p → Lp+1.

Once we have these Lp+1 bounds, scattering in Hε for (HNLS) is obtained through interpo-
lation between scattering in H−σ (obtained by Sobolev embeddings and the Lp+1 bounds) and
a bound for the solution in Hε. See Proposition 6.1 for the details.

1.4.4. Organisation of the paper. The remaining of this paper is organised as follows: Section 2
introduces the space X0, the Gaussian measure µ and gathers their properties. Then the proof
of Theorem 1.2 and Theorem 1.3 starts in Section 3 with a large probability local well-posedness
theory. The evolution of the quasi-invariant measures are studied in Section 4 which allows
to extend the local theory into an almost-sure global theory in Section 5 and the proof of
Theorem 1.2 and Theorem 1.3 is finished in Section 6. Finally technical estimates are gathered
in Appendix A and Appendix B for results concerining the lens transform.

Acknowledgements. The author thanks Nicolas Burq and Isabelle Gallagher for suggesting
this problem and subsequent discussions. The author thanks Nicola Visciglia for raising the
question of the extension of the results in [BTT15] to higher dimensions and Paul Dario for
useful comments on a draft of the manuscript.

2. The harmonic oscillator and quasi-invariant measures

2.1. The harmonic oscillator in the radial setting. We recall some facts concerning the
radial harmonic oscillator, and refer to [Sze39] for proofs.

The radial harmonic oscillator is defined as the harmonic oscillator H := −∆ + |x|2 acting
on the space Srad(Rd) or radial Schwartz functions. It is a symmetric operator and admits a
self-adjoint extension on H1

rad(Rd). It is known that the spectrum of H acting on H1(R) (that
is the standard one-dimensional harmonic oscillator) is discrete and made of the non-degenerate
eigenvalues 2n + 1, for n > 0. Even if we do not need the exact expression of the associate
eigenfunctions, that we denote by fn, we recall that the fn are explicitly computable. Then we
deduce that the spectrum of H acting on H1(Rd) is made of the degenerate eigenvalues 2n+ d,
for n > 0 with eigenfunctions

en1 ⊗ · · · ⊗ end , where
d∑
i=1

ni = n .

Finally, the spectrum of H acting on H1
rad(Rd) is made of non-degenerate eigenvalues

λ2
n = 4n+ d for n > 0 ,

and eigenfunctions denoted by en which can be written explicitly, but again we do not use their
expression. All that will be used in the sequel is that the sequence (en)n>0 satisfies the following
Lp estimates. We also refer to [IRT16] for details on the harmonic oscillator acting on radial
functions.

Lemma 2.1 ([IRT16], Proposition 2.4). Let d > 2. Then
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(i) ‖en‖Lp . λ
−d
(

1
2−

1
p

)
n for p ∈

[
2, 2d

d−1

)
;

(ii) ‖en‖Lp . λ
− 1

2
n log

1
p λn for p = 2d

d−1 ;

(iii) ‖en‖Lp . λ
d
(

1
2−

1
p

)
−1

n for p ∈
(

2d
d−1 ,∞

]
.

In the above inequalities the implicit constant may depend on d bun not p nor n.

Remark 2.2. From this lemma we see that in the scale of Lp regularity, as long as p < 2d
d−2 , then

eigenfunctions en exhibit some decay, which is used to prove probabilistic smoothing estimates,
see for example [BTT13], Appendix A for such estimates.

2.2. Measures and probabilistic smoothing. Consider a probability space (Ω,A,P) and let
(gn)n>0 be an identically distributed sequence of centred, normalised complex Gaussian variables.
Then we define the random variable f : Ω→ S ′(Rd) by

(2.1) fω(x) :=
∑
n>0

gn(ω)
λn

en(x) ,

where λn, en are the eigenvalues and eigenfunctions of the radial harmonic oscillator previously
defined. Moreover we consider the approximations

fN :=
N∑
n=0

gn
λn
en ,

which almost surely converge to f in S ′. Moreover (fN )N>1 is a Cauchy sequence in L2(Ω,H−σ)
for every σ > 0. For a proof of this fact see [BTT13], Lemma 3.3. More precisely, if we denote
by µ := f∗P, the law of the random variable f , then we have the following.

Lemma 2.3. The measure µ is supported by X0 :=
⋂
σ>0
H−σrad and moreover:

(i) For µ almost every u one has u /∈ L2.
(ii) For any p close enough to 2 and any R > 0, µ(u ∈ X0, ‖u‖Lp > R) > 0.

Proof. (i) The first part is a straightforward adaptation of Lemma 3.3 in [BTT13]. For the
proof of the fact that for µ-almost every u, there holds u /∈ L2, see [Poi12], Section 4, Lemma 53
and Proposition 54. The argument is easily adapted to our case and mostly relies on a careful
application of an inequality of Paley-Kolmogorov which states that for λ > 0 and X ∈ L2(Ω):

(2.2) P(X > λE[X]) > (1− λ)2E[X]2

E[X2] ·

(ii) This result is claimed in [BTT13] and we provide a proof in full details. We construct
large data in the following way. Let E ⊂ Ω be the set defined by:

E :=

g0 > 2R , (gn)n>1

∥∥∥∥∥∥
∑
n>1

gn
λn
en

∥∥∥∥∥∥
Lp

6 R

 ,

which by independence has probability P(E) = P(g0 > 2R)P
(∥∥∥∑n>1

gn
λn
en
∥∥∥
Lp
6 R

)
. Since g0 is

a Gaussian, P(g0 > 2R) > 0. Moreover, since p > 2 we have

P

∥∥∥∥∥∥
∑
n>1

gn
λn
en

∥∥∥∥∥∥
Lp

6 R

 > 1− e−cR2
.

Then on the set E we have ‖u‖Lp > R. Hence we have proven the claim. �
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Note that X0 is a topological space endowed with its intersection topology. Moreover the
norm

‖u‖X0 := sup
σ>0
‖u‖H−σ ,

is such that X0 endowed with this norm is a Banach space. Finally X0 is separable. Under
these hypothesis and according to Theorem 7.1.4 in [Dud02], the Borelian measure µ is regular,
that is, for every Borelian set A:
(2.3) µ(A) = sup

K compact
K⊂A

µ(K) = inf
O open
A⊂O

µ(O) .

We define an infinite dimensional re-normalised Lebesgue measure:

du :=
⊗
n>0

dun :=
⊗
n>0

λnL ,

where L is the Lebesgue measure on C and the sequence (un)n>0 stands for the coordinates of an

u ∈ X0 such that u =
∞∑
n=0

unen. The measure µ can be explicitly computed using the definition

of f and this ensures that µ has a density with respect to the infinite Lebesgue measure du,
given by

dµ = exp

−1
2
∑
n>0

λ2
nu

2
n

⊗
n>0

dun = e
− 1

2‖u‖
2
H1 du .

From now, we shall write for every µ-measurable set A:

µ(A) = Cµ

∫
A
e
− 1

2‖u‖
2
H1 du ,

where Cµ > 0 is a constant chosen so that µ is a probability measure (the measure µ being finite
since its density with respect to du is integrable).

We have seen that for u on the support of µ, almost surely u /∈ L2 which proves that the
measure µ is non-smoothing. A gain in the Lp scale Sobolev spaces can however be exhibited
as follows.

Lemma 2.4. Let d > 2 and ε > 0 arbitrarily small. Define

sp =

 d
(

1
2 −

1
p

)
if p ∈

(
2, 2d

d−1

]
1− d

(
1
2 −

1
p

)
if p ∈

(
2d
d−1 ,

2d
d−2

]
and s−p := sp − ε. Then:

(i) For µ-almost every u ∈ X0 one has u ∈ Ws−p ,p.
(ii) More precisely there exists C, c > 0 such that for every p > 2 and λ > 0 we have

µ
(
u ∈ X0, ‖u‖

Ws−p ,p
> λ

)
6 Ce−cλ

2
.

Proof. The proof is very similar to the proof of Lemma 3.3 in [BTT13] with N0 = 0 and N =∞,
and using the bounds 2.1. See also [AT08]. �

The probabilistic smoothing gain is represented on Figure 1.
We introduce the following family of sets:

(2.4) E(r,q,σ)(λ) :=
{
u ∈ X0, ‖e−itHu‖Lr[−π,π]W

σ,q > λ
}
.

Lemma 2.4 immediately implies the following corollary. For details see [Tho09]. Note that we
take norms in time on [−π, π] although we work only on [−π

4 ,
π
4 ]. This is due to the need of

room for the estimates in Lemma A.2.



10 MICKAËL LATOCCA

1
2

1
2

1
p

s

1
2 − 1

2d
1
2 − 1

d

1
2

1
2

1
p

s

1
4

Figure 1. Probabilistic gain on the grey zone. The right picture describes the
case d = 2 and the picture on the left is the case d > 3, where we can see that
the probabilistic gain holds for sufficiently large 1

p .

Corollary 2.5. There exists C, c > 0 such that for every r > 1, q ∈
[
2, 2d

d−2

]
and σ ∈ [0, s−q )

one has
µ
(
E(r,q,σ)(λ)

)
6 Ce−cλ

2 for all λ > 1

3. The probabilistic local Cauchy theory

In this section we construct a local Cauchy theory for (HNLS).
A pair (q, r) ∈ [2,∞]2 is Schrödinger admissible in dimension d > 1 if (q, r, d) satisfies

2
q

+ d

r
= d

2 and (q, r, d) 6= (2,∞, 2) .

Remark 3.1. We should check on many ocasions that a given pair (q, r) is admissible. One
should keep in mind that the condition q, r > 2 is required. Taking into account the relation
between q and r, the requirement q, r > 2 is equivalent to q > 2. In the same spirit, (q′, r′) is
such that (q, r) is admissible if and only if 1

2 6
1
r′ 6

1
2 + 1

d .

We define the Strichartz space
Y σ

[t0,t] :=
⋂

(q,r) admissible
Lq([t0, t],Wσ,r)

and its dual Ỹ σ
[t0,t] that we respectively endow with the norms:

‖u‖Y σ[t0,t] := sup
(q,r) admissible

‖u‖Lq([t0,t],Wσ,r) and ‖u‖Ỹ σ[t0,t]
:= inf

(q,r) admissible
‖u‖Lq′ ([t0,t],Wσ,r′ ) .

Let σ > 0. Using the Sobolev embedding, if (q, r̃) is Schrödinger admissible and r is such that
d
r̃ = d

r + σ then
‖u‖LqTLr . ‖u‖LqTWσ,r̃ . ‖u‖Y σT .

Thus we often refer to (q, r) being σ-Schrödinger admissible if 2
q + d

r = d
2 − σ, and q > 2.

Proposition 3.2 (Dispersion and Strichartz estimates). Given σ > 0 and t0, T ∈ (0, π4 ), the
following estimates hold.

(i) (Dispersion) For r > 2 and t > 0 holds ‖eitH‖Lr′→Lr 6 C(d, r)|t|−d(
1
2−

1
r );

(ii) (Homogeneous) ‖eitH‖Hσ→Y σ[t0,T ]
6 C(d);
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1
2

1 + 4
d

p

σ(p, d)

1
2

1 + 4
d

p

σ(p, d)

1 + 3
d−2

Figure 2. The maximum regularity in the local theory. On the left is the case
d 6 8 and on the right is the case d > 8.

(iii) (Non-homogeneous)
∥∥∥∥∫ t

0
ei(t−s)H ds

∥∥∥∥
Ỹ σT→Y

σ
T

6 C(d).

Proof. The proof is carried out in detail in dimension two in [Den12], Proposition 2.7. For
dimension d > 3 we refer to [Poi12]. In both cases the proof is an application of the TT ∗
argument and the Christ-Kiselev lemma along with a dispersive estimate for e−itH : L1 → L∞

which is obtained through stationary phase estimates. �

It will be convenient to set Y σ
t0,τ := Y σ

[t0,t0+τ). We introduce the following set of initial data:
for p ∈ (1, 1 + 4

d), if d ≤ 8,
(3.1) A◦λ := E(4, 2d

d−1 ,σ)(λ) ∩ E(a(p−1),b(p−1),σ)(λ) ,

where a, b depend on p, d and will be chosen in the proof of Proposition 3.3. Similarly if d > 8
we set
(3.2) A◦λ := E(q0,r0,σ(p,d)−)(λ) ∩ E(a(p−1),b(p−1)),σ(p,d)(λ) ,

with q0 := 4
(d−2)(p−1)−2 , r0 := 2d

d+2−(d−2)(p−1) , σ(p, d) = 2− d−2
2 (p− 1) and where a, b depend on

p, d and will be chosen in the proof of Proposition 3.3. Note that once such a, b are fixed and
provided b(p− 1) < 2d

d−2 , these sets satisfy

µ(A◦λ) 6 Ce−cλ2
,

for numerical constants c, C > 0, according to Lemma 2.5.
We will establish a local theory in Hσ for σ < σ(d, p) where σ(p, d) is defined by (1.1) and

represented as a function of p in the case d 6 8 and d > 8 on Figure 2.
The main result of this section is a flexible local well-posedness result, where the initial data

is given at a time t0. We state only a forward in time result in [0, π4 ), a similar statement holds
for negative times.

Proposition 3.3 (Local Cauchy theory). Let d > 2, t0 ∈ [0, π4 ), p ∈
[
1, 1 + 4

d

)
and σ ∈

[0, σ(p, d)). Given λ > 0, there exists τ > 0 such that for v0 ∈ X0 \ A◦λ, there exists a unique
solution

v ∈ e−i(t−t0)Hv0 + Y σ
[t0,t0+τ ] ↪→ C

0([t0, t0 + τ ],Hσ)
to (HNLS) on [t0, t0 + τ ] such that v(t0) = v0, where uniqueness hold for v − e−i(t−t0)Hv0 in
Y σ

[t0,t0+τ ] . Moreover there exist α, β > 0 only depending on p and d such that τ ∼ λ−α
(
π
4 − t0

)β.
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Remark 3.4. The key point that we will use in the sequel is that given an initial data at time t0
of typical size ∼ λ (in the set X0 \A◦λ, which is of measure > 1−Ce−cλ2) a solution to (HNLS)
can be constructed on [t0, t0 + τ ] where τ ∼ λ−α

(
π
4 − t0

)β for positive constants α, β, the exact
expression of which is not needed, the key feature being the polynomial dependence on the
distance to π

4 . Observe that for t0 6 t < π
4 , up to reducing the local time τ , we can choose τ

not depending on t0 ∈ [0, t). We say that τ is uniform in [0, t).

The strategy for proving local well-posedness is a fixed-point argument, which turns out to be
easier than the one in [BT20]. In the latter case, the lack of sufficient regularisation in the the
stochastic linear term requires a more refined analysis, whereas Lemma 2.4 is already powerful
enough for our purpose. We write Φ : Y σ

t0,τ −→ S
′ for the map defined by

(3.3) Φ(w)(t) := −i
∫ t

t0
e−i(t−s)H

(
cos(2s)

d
2 (p−1)−2|vL(s) + w(s)|p−1(vL(s) + w(s))

)
ds ,

where vL(t) := e−i(t−t0)Hv0 is the linear evolution of the initial data v0. The crucial estimates
needed to run the fixed point argument are gathered in the following lemma.

Lemma 3.5. Let Φ defined by (3.3). Let d > 2. Let also p ∈
[
1, 1 + 4

d

)
, σ ∈ [0, σ(p, d)) and

τ 6 1
2
(
π
4 − t0

)
. There exist constants α > 0, β > 0 which only depend on p, d and σ, such that

for v0 /∈ A◦λ and for w1, w2, w3 in the ball B(0, λ) of Y σ
t0,τ , one has:

(3.4) ‖Φ(w)‖Y σt0,τ .d,p
(
π

4 − t0
)−β

ταλp

and

(3.5) ‖Φ(w1)− Φ(w2)‖Y σt0,τ .d,p
(
π

4 − t0
)−β

ταλp−1‖w1 − w2‖Y σt0,τ .

Proof of Proposition 3.3. Lemma 3.5 proves that Φ is a contraction on the ball B(0, λ) of
Y σ

[t0,t0+τ ] as soon as τ .
(
π
4 − t0

)β/α
λ−p/α. Then the Picard fixed point theorem provides

existence and uniqueness in this ball. Iterating the uniqueness argument finitely many times
yields uniqueness in Y σ

[t0,t0+τ ]. �

Proof of Lemma 3.5. Let u0 ∈ X0 \ A◦λ, the parameters a, b of the latter will be chosen in
the proof. From (3.3) and by the non-homogeneous Strichartz estimates with an admissible
pair (q, r), one has

‖Φ(v)‖Y σ[t0,t0+τ ]
6 ‖ cos(2s)

d
2 (p−1)−2|vL(s) + w(s)|p−1(vL(s) + w(s))‖

Lq
′

[t0,t0+τ ]W
σ,r′

6

(∫ t0+τ

t0

(
π

4 − s
)( d2 (p−1)−2)q1) 1

q1

‖|vL + w|p−1(vL + w)‖
Lq̃[t0,t0+τ ]W

σ,r′

.
(
π

4 − t0
) d

2 (p−1)−2
τ

1
q1 ‖|vL + w|p−1(vL + w)‖

Lq̃[t0,t0+τ ]W
σ,r′ ,

where we used Hölder’s inequality with q1, q̃ to be adjusted and such that 1
q1

+ 1
q̃ = 1

q′ . We also
used that | cos(2s)| &

(
π
4 − s

)
and τ 6 1

2
(
π
4 − t0

)
.
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Then by the Sobolev product estimates from Lemma A.1 and the triangle inequality one can
write

‖Φ(w)‖Y σ[t0,t0+τ ]
.
(
π

4 − t0
) d

2 (p−1)−2
τ

1
q1 ‖vL + w‖Lq2Wσ,r2‖|vL + w|p−1‖Lq3Lr3

.
(
π

4 − t0
) d

2 (p−1)−2
τ

1
q1

(
‖vL‖Lq2Wσ,r2 + ‖w‖

Lq2Wσ, 2d
d−1

)
×
(
‖vL‖p−1

Lq3(p−1)Lr3(p−1) + ‖w‖p−1
Lq3(p−1)Lr3(p−1)

)
,

where the parameters q1, q2, q3 and r3 need to satisfy
1
q1

+ 1
q2

+ 1
q3

= 1
q′
,

and
1
r2

+ 1
r3

= 1
r′
·

We recall that q′, r′ need to satisfiy q′, r′ ∈ [1, 2] and
2
q′

+ d

r′
= d

2 + 2 .

Assume that we are able to choose the parameters q1, q2, q3, q
′, r2, r3, r

′ so that the norm Lq2Lr2

is Schrödinger admissible, Lq3(p−1)Lr3(p−1) is σ-Schrödinger admissible and ‖vL‖Lq2Wσ,r2 < ∞,
‖vL‖Lq3(p−1)Lr3(p−1) < ∞. The previous estimates show that for v0 ∈ X0 \ A◦λ (with (a, b) :=
(q3, r3)) and w in the ball B(0, λ) of Y σ

[t0,t0+τ ] we have

‖Φ(w)‖Y σ[t0,t0+τ ]
.
(
π

4 − t0
) d

2 (p−1)−2
τ

1
q1 λp ,

so we obtain (3.4). Similar computations yield (3.5), using the inequality (A.2) to estimate the
term |vL + w1|p−1(vL + w1)− |vL + w2|p−1(vL + w2), thus we omit the details.

Now we need to explain how to choose the parameters. We distinguish several cases.

Case 1. We assume p 6 min{1 + 3
d−2 , 1 + 4

d} so that σ(p, d) = 1
2 . To control the Wσ,r2 norm

we need to take r2 = 2d
d−1 in order to use the estimates from Lemma 2.4 so that since u0 /∈ A◦λ

‖vL‖
Lq2Wσ, 2d

d−1
6 λ because σ < sc( 2d

d−1). This forces us to take q2 = 4 in order to get:

‖w‖
L4Wσ, 2d

d−1
6 ‖w‖Y σ[t0,t0+τ ]

.

We also have ‖vL‖Lq3Lr3(p−1) 6 λ, provided the condition r3(p − 1) 6 2d
d−2 which is implied

by r′ satisfying 1
r′ > p

(
1
2 −

1
d

)
+ 1

2d . Note that in order to ensure that q′ ∈ [1, 2] we need
1
2 6

1
r′ 6

1
2 + 1

d . The above restriction on r′ makes it possible to choose such an r′ if and only if

p

(1
2 −

1
d

)
+ 1

2d 6
1
2 + 1

d
,

which gives the condition p 6 1+ 3
d−2 satisfied by hypothesis. Then we choose such an r′ (which

fixes r3 as desired, and satisfies r′ ∈ [1, 2]) and an associate q′, which is also in the range [1, 2].
To make sure that we can control the term ‖w‖Lq3(p−1)Lr3(p−1) by the Strichartz norm ‖w‖Y σt0,τ ,
we use the Sobolev embedding which reads

‖vL‖Lq3(p−1)Lr3(p−1) . ‖vL‖Lq3(p−1)Wσ,r̃3(p−1)

where r̃3 satisfies the Sobolev condition 1
r̃3(p−1) 6

σ
d + 1

r3(p−1) . If moreover (q3(p− 1), r̃3(p− 1))
is Schrödinger admissible, that is 2

q3(p−1) + d
r̃3(p−1) = d

2 and q3(p − 1), r̃3(p − 1) > 2, then we
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can control ‖w‖Lq3(p−1)Lr3(p−1) by the Strichartz norm ‖w‖Y σt0,τ . We remark that the Sobolev
condition can be written in the form

1
r3(p− 1) > −

σ

d
+ 1

2 −
2

dq3(p− 1) ,

which can be written in variables q1, p, d as
1
q1
6 1− (p− 1)(d− 2σ)

4 ,

which is always satisfied for large q1, since the quantity in the right-hand side is always bounded
by below by 1 − min{ 3

d−2 ,
4
d
}

4 (d − 2σ) > 0. Now we can choose freely q3 such that q3(p − 1) > 2
large enough so that 1

q1
+ 1

q3
< 1

q′ −
1
4 .

Case 2. We assume d > 8, p ∈ [1, 1 + 4
d) and thus σ(p, d) = 2− d−2

2 (p− 1). We take the initial
data in Ã◦λ, defined by (3.2). We choose

q2 := 4
(d− 2)(p− 1)− 2 > 2 and r2 := 2d

d+ 2− (d− 2)(p− 1) > 2 ·

Observe that according to Lemma 2.4 we have ‖vL‖Lq2Wσ,r2 6 λ and ‖w‖Lq2Wσ,r2 6 λ because
(q2, r2) is Schrödinger admissible. As above we need to make sure we can find r3 such that

r3(p− 1) 6 2d
d− 2

and
1
r3

+ d+ 2− (d− 2)(p− 1)
2d = 1

r′
·

The condition that 1 6 q′ 6 2 translates into 6 1
2 6

1
r′ 6

1
2 + 1

d . The condition on r3 is written:

1
r′
>

(p− 1)(d− 2)
2d + d+ 2− (d− 2)(p− 1)

2d ·

The two previous conditions can be simultaneously satisfied provided p 6 1 + 4
d which is our

hypothesis. Then we choose q′ accordingly. To finish the proof we need to control the norm
‖w‖Lq3(p−1)Lr3(p−1) and with the same computations as above this translates into a condition on
q1 which reads

1
q1
6 1−

(
d

4 −
σ(d)

2

)
(p− 1) ,

which is satisfied for large q1 as soon as

1−
(
d

4 −
σ(d)

2

)
(p− 1) > 0 ,

that is p − 1 6 −d+4+
√
d2+8d−16

2(d−2) . This is satisfied since p − 1 6 4
d 6

−d+4+
√
d2+8d−16

2(d−2) . Then we
choose q3 large enough so that q3(p− 1) > 2 and we conclude. �

4. Quasi-invariant measures and their evolution

Our next task is to globalise the local statement of Proposition 3.3. In order to do so we
need to keep track of the measures of the good sets of well-posedness, i.e we need to estimate
µ(φt(A)) where A is a µ-measurable set and φt stands for the flow of (HNLS). Due to explicit
time dependence in the equation (HNLS) we do not expect the measure formally defined by

(4.1) νt(A) = Cµ

∫
A
e
− 1

2‖u‖
2
H1−

cos(2t)p−3
p+1 ‖u‖p+1

Lp+1 du =
∫
A
e
− cos(2t)p−3

p+1 ‖u‖p+1
Lp+1 dµ ,
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to be invariant, but only quasi-invariant. This is one of the main ideas in [BT20] and we will
carry out the same program. The quasi-invariance will be obtained using a Liouville theorem
on finite dimensional approximations of (HNLS) and a limiting argument.

With the smooth projections SN defined in the introduction, we introduce the following
approximate equations:

(HNLSN )
{
i∂tv −Hv = cos(2t)p−3SN (|SNv|p−1SNv)

v(0) = u0 ,

and denote by φNt its flow. Writing u = uN + uN , a solution to (HNLSN ) with uN = SNu we
observe that from equation (HNLSN ), uN satisfies

(4.2)
{
i∂tvN −HvN = cos(2t)p−3SN (|SNvN |p−1SNvN )

v(0) = SNu0 ,

which is a finite dimensional ordinary differential equation in CN+1 ' R2(N+1).
We recall the following useful fact, which is proved in [BGT04] for instance:

(4.3) sup
N>1
‖SN‖Lq→Lq 6 C(q) for q > 2 ,

from which we infer that the local Cauchy theory of Proposition 3.3 applies to (HNLSN ) without
modification.

From equation (HNLSN ), we observe that vN satisfies

(4.4)
{

i∂tv
N −HvN = 0

v(0) = (id−SN )u0 ,

so that if we identify vN to the sequence (vn)n>N such that vN =
∑
n>N

vnen, we can explicitly

solve (4.4) and find that for every n > N + 1,

(4.5) vn(t) = e−itλ
2
n(u0)n ,

and denote by φ⊥,Nt its flow.
We start with a lemma which is nothing but the Liouville theorem, which proof is recalled.

Lemma 4.1. The measure du is invariant under the flow φNt of (HNLSN ).

Proof. First we recall that (4.2) is locally well-posed in C1(R,R2(N+1)), thanks to the Cauchy
theory for ordinary differential equations and globally well-posed since t 7→ ‖uN (t)‖L2 is con-
served. Moreover this equation admits a Hamiltonian structure. In order to see it, we write
that for every n, un = pn + iqn where pn, qn are real numbers. Then we claim that there exists
a function EN = EN (t, p1, . . . , pN , q1, . . . , qN ) such that if p = (p1, . . . , pn) and q := (q1, . . . , qn),
(4.2) takes the form

(4.6)
{
p′(t) = ∂qEN (t, p(t), q(t))
q′(t) = −∂pEN (t, p(t), q(t)) .

In order to find EN , write u = p + iq and equate real and imaginary parts of (4.2) to obtain
that a Hamiltonian satisfying (4.6) is given by

EN (t, p1, . . . , pN , q1, . . . , qN ) := 1
2
∑
n=0

λ2
n(a2

n + b2n) + cos(2t)
d
2 (p−1)−2

p+ 1

∥∥∥∥∥
N∑
n=0

(an + ibn)en

∥∥∥∥∥
p+1

Lp+1(Rd)
.

More details are given in [BTT13], Lemma 8.1. For a solution (p, q) to (4.6) we write (p(t), q(t)) =
φ̃Nt (p0, q0). Let

duN =
N⊗
n=0

dun =
N⊗
n=0

(dpn ⊗ dqn) ,
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then for every smooth function f with compact support we have
d
dt

∫
f(φ̃Nt (p0, q0)) duN (p0, q0) =

∫
(∂pEN∂qf − ∂qEN ∂pf) dpdq = 0 ,

where we integrated by parts in the last equality. Finally by density this shows that the mea-
sure duN is invariant under φ̃Nt . Moreover by (4.5) and recalling that the Lebesgue measure is
invariant under rotation we see that the measure

⊗
n>N dun is conserved by the flow φ⊥,Nt . To

conclude, observe that φNt = φ̃Nt ⊗ φ
⊥,N
t and use the Fubini theorem. �

The Hamiltonian we have found takes the form:

EN (t) := 1
2‖v(t)‖2H1 + cos(2t)

d
2 (p−1)−2

p+ 1 ‖SNv(t)‖p+1
Lp+1 .

It is not conserved under the flow φNt and more precisely

(4.7) E′N (t) = d(p− 1)− 4
p+ 1 tan(2t) cos(2t)

d
2 (p−1)−2‖SNv(t)‖p+1

Lp+1 .

For t > 0 and N > 0 we define the finite measures, which are not necessarily probability
measures, associated to the unconserved energies EN by:

ν
(N)
t (A) := Cµ

∫
A
e
− 1

2‖
√
Hu‖2

L2−
cos(2t)

d
2 (p−1)−2

p+1 ‖SNu‖p+1
Lp+1 du .

From the definition it follows that for all µ-measurable sets A one has ν(N)
t (A) 6 µ(A). Moreover

we have the following convergence result.

Lemma 4.2. Let t > 0. Then the measure νt is not trivial, i.e its density with respect to µ does
not vanish almost surely. Moreover we have the strong convergence ν(N)

t → νt, that is for every
measurable set A, ν(N)

t (A)→ νt(A).

Proof. To see the first claim, just observe that for u in the support of the measure µ, since
p+ 1 ∈

(
2, 2 + 4

d

)
we have p+ 1 < 2d

d−2 and then ‖u‖Lp+1 <∞ thanks to Lemma 2.1. Moreover
for such u in the support of µ we have SNu→ u in Lp+1 as N →∞ thanks to Lemma 4.3. The
domination

e
− cos(2t)p−3

p+1 ‖SNu‖p+1
Lp+1 6 1

and Lebesgue’s convergence theorem ensures the strong convergence ν(N)
t → νt. �

The quantitative quasi-invariance property which we are going so state and prove are exactly
the same as in [BT20]. However for convenience we recall the proof.

Proposition 4.3 (Measure Evolution). Let t ∈ (−π
4 ,

π
4 ), N > 1 and a µ-measurable set A.

(i) (φNt )∗µ and µ are mutually absolutely continuous with respect to each other;

(ii) νt
(
φNt (A)

)
6 ν0(A)cos(2t)| d2 (p−1)−2|

;

(iii) ν0(A) 6 νt
(
φNt (A)

)cos(2t)| d2 (p−1)−2|
.

Proof. Note that once we have proved (ii) and (iii) then we immediately can conclude the proof
for (i) since the two previous points give us that

(φNt )∗νt � ν0 � (φNt )∗νt .

As by definition µ� νt and νt � µ, which proves (i).
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To prove (ii) we start by studying the measure νNt , writing

d
dtν

(N)
t (φNt A) = Cµ

d
dt

∫
v∈φNt A

e
− 1

2‖
√
Hv‖2

L2−
cos(2t)

d
2 (p−1)−2

p+1 ‖SNv‖p+1
Lp+1 dv


= Cµ

d
dt

∫
A
e
− 1

2‖
√
Hφ

(N)
t u0‖2

L2−
cos(2t)

d
2 (p−1)−2

p+1 ‖SNφ
(N)
t u0‖p+1

Lp+1 du0


= Cµ

d(p− 1)− 4
2 tan(2t)

∫
A
α(t, u)e−EN (t) du0 ,

with α(t, u) = cos(2t)
d
2 (p−1)−2

p+1 ‖SNu(t)‖p+1
Lp+1 . In the first inequality we have used the change of

variable v = φNt u0, which leaves du invariant according to Lemma 4.1.
Now apply Hölder’s inequality for a k > 1 to be chosen later, and use that for all positive α

we have αke−α 6 kke−k which gives

d
dtν

(N)
t (φNt A) 6 |d(p− 1)− 4| tan(2t)

(
C0

∫
A
αk(t, u(t))e−EN (t) du0

) 1
k (
ν

(N)
t (φNt A)

)1− 1
k

= |d(p− 1)− 4| tan(2t)
(
C0

∫
A
αk(t, u(t))e−α(t,u)− 1

2‖
√
Hu(t)‖2

L2 du0

) 1
k

×
(
ν

(N)
t (φNt A)

)1− 1
k

6 |d(p− 1)− 4| tan(2t)k
e

(
ν

(N)
t (φNt A)

)1− 1
k ,

where we used the backward change of variable that leaves the measure invariant again. Now
we choose k to optimise this inequality, namely k := − log

(
νNt (φNt A)

)
so that

d
dtν

(N)
t (φNt A) 6 |d(p− 1)− 4| tan(2t) log

(
ν

(N)
t (φNt A)

)
ν

(N)
t (φNt A) .

We rewrite it as:

− d
dt
(
log

(
− log

(
ν

(N)
t (φNt A)

)))
6 |d(p− 1)− 4| tan(2t)

= −
∣∣∣∣d2(p− 1)− 2

∣∣∣∣ d
dt (log(cos(2t))) ,

which after integration reads

− log
(
ν

(N)
t (φNt A)

)
6 (ν(N)

0 (A))cos(2t)| d2 (p−1)−2|
.

Then we observe that for M > N and for every µ-measurable set A, one has

ν
(N)
t (φNt A) = ν

(M)
t (φNt A)→ νt(φNt A) as M →∞

so that finally get the result passing to the limit.
The estimate (iii) is obtained by similar means, observing first that

d
dtν

(N)
t (φNt A) > −|d(p− 1)− 4| tan(2t)k

e

(
ν

(N)
t (φNt A)

)1− 1
k ,

for every k > 1, optimising in k and integrating as before. �
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5. Global Theory

Before stating global results we need an approximation lemma which quantifies to what ex-
tent (HNLSN ) is a good approximation of (HNLS).

Lemma 5.1 (Approximation). Let d > 2, p ∈
(
1, 1 + 4

d

)
and σ < 0. Let also t0, t ∈

(
0, π4

)
such

that t0 < t. Consider v0 ∈ X0 \ A◦λ an initial data. We assume that λ > 0 is large enough so
that the local solution w (resp. wN ) associated to v0 to the problem (HNLS) (resp. (HNLSN ))
constructed in Proposition 3.3 on [t0, t] exist in some Y σ̃

[t0,t] for some σ̃ > 0, and that the esti-
mates (3.4) and (3.5) hold.

Then there exists a constant C(t0, t) > 0 such that for every σ′ < σ, there holds

‖w − wN‖L∞([t0,t],Hσ′ ) 6 C(t0, t)Nσ′−σ .

Proof. We follow the lines of [Bou94] where a similar result is proven. Let us write
w − wN = zN − (id−SN )(vN )

= zN −P>N (vL)−P>N (wN ) ,
where

zN (t) := w(t)− SNwN (t) + (id−SN )vL ,
and satisfies

zN (t0) = P>Nv(t0) .
We recall that the local well-posedness theory developed in Proposition 3.3 applies verbatim

to equation (HNLSN ) uniformly in N . For λ lare enough, the vN = vL + wN exist on the time
interval [t0, t] and we have ‖wN‖Y σ[t0,t] 6 C(t0, t). Then the Bernstein inequality ensures that
‖P>NwN‖L∞([t0,t],Hσ′ ) 6 C(t0, t)Nσ′−σ.

From the Bernstein inequality it follows that since v(t0) ∈ Hσ we have ‖P>NvL‖L∞([t0,t],Hσ′ ) 6

C(t0, t)Nσ′−σ.
We are left with estimating the Y σ′

[t0,t] norm of zN . In order to do so, we observe that zN
satisfies:

i∂tzN −HzN = cos(2t)
d
2 (p−1)−2 (F (vL + w)− SNF (vL + w − zN ))(5.1)

= cos(2t)
d
2 (p−1)−2(id−SN )F (vL + w)

+ cos(2t)
d
2 (p−1)−2SN (F (vL + w)− F (vL + w − zN )) ,

where F is defined by F (X) = X|X|p−1, the nonlinear term. Using the decomposition in the
right-hand side of (5.1) and the Strichartz estimates from Proposition 3.2 and a local existence
time associated to w(t0) given by Lemma 3.5, we obtain that for δ 6 τ :

‖zN‖Y σ′[t0,t0+δ]
6 ‖P>Nw(t0)‖Hσ′(5.2)

+ ‖ cos(2t)
d
2 (p−1)−2(id−SN )F (vL + w)‖

Ỹ σ
′

t0,[t0+δ]
(5.3)

+ ‖ cos(2t)
d
2 (p−1)−2SN (F (vL + w)− F (vL + w − zN )) ‖

Ỹ σ
′

([t0,t0+δ]
.(5.4)

We now deal with each term (5.2), (5.3), (5.4). For (5.2), by Bernstein’s inequality we have

‖P>Nw(t0)‖Hσ′ 6 CN
σ′−σ‖w(t0)‖Hσ .

Using the local theory estimates from Lemma 3.5 and Bernstein’s inequality, we obtain

‖ cos(2t)
d
2 (p−1)−2(id−SN )F (vL + w)‖

Ỹ σ
′

[t0,t0+δ]
6 CNσ′−σ

(
π

4 − t
)−β

δαλp ,
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and finally with the estimates from Lemma 3.5 again we also have:

‖ cos(2t)
d
2 (p−1)−2SN (F (vL + w)− F (vL + w − zN )) ‖

Ỹ σ
′

[t0,t0+δ]

6 Cλp−1
(
π

4 − t
)−β

δα‖zN‖Y σ′ ([t0,t0+δ]) .

Combining these estimates and for δ small enough we have

‖zN‖Y σ
t0,δ
6

1
2‖zN‖Y

σ
t0,δ

+ C(t)‖w(t0)‖Hσ
2 Nσ′−σ .

Finally we have proved that ‖zN‖Y σ([t0,t0+δ]) 6 Nσ′−σC(t)‖w(t0)‖Hσ . We need to iterate this
estimate in time until we reach time t and we need to check that only a finite number of steps
are required. We remark that the local existence time τ can be chosen uniformly in [t0, t] thanks
to the remark following Proposition 3.3 and that δ can be chosen only depending on t and λ,
thus is uniform in [t0, t]. Repeating the argument b tτ c times gives

‖zN‖Y σ[t0,t] 6 N
σ′−σC(t)

b t
τ
c∑

n=1
‖w(t0 + nτ)‖Hσ

6 Nσ′−σC(t)
d t
τ
e∑

n=1
2n‖w(t0)‖Hσ ,

where we used that on an interval of local well-posedness the size of the function in Hσ does not
grow more than the double. Since τ does only depend only on t and the parameters we obtain
the required estimate on zN so that finally

‖w − wN‖L∞([t0,t],Hσ′ ) 6 ‖(id−SN )(vL + wN )‖
Y σ
′

t0,t
+ ‖zN‖Y σ′t0,t

6 Nσ′−σC(t0, t)

as claimed. �

Corollary 5.2. Let t ∈ (−π
4 ,

π
4 ), and ε > 0. Let Bε denotes the ball of radius ε in the space

X0. Let A be a Borelian set of X0. Then for sufficientely large N , there holds

(5.5) φNt (φ−1
t A) ⊂ A+Bε .

Proof. The proof is essentially contained in Lemma 5.1. Observe that for any u0 ∈ φ−1
t (A), we

can write that φtu0 = vL(t) + w(t) and φNt u0 = vL(t) + wN (t). Let σ be as in Lemma 5.1 and
σ′ < σ. For σ > σ′ > 0, the result of Lemma 5.1 writes

‖φt(u0)− φNt (u0)‖H−σ = ‖w(t)− wN (t)‖H−σ
6 ‖w − wN‖L∞([0,t],H−σ)

6 C(t)N−σ+σ′ ,

so that for N large enough we have ‖φtu0 − φNt u0‖H−σ 6 ε for all σ < 0, which means that
‖φt(u0)− φNt (u0)‖X0 6 ε, and since φt(u0) ∈ A this implies φNt (u0) ∈ A+Bε. �

We use this approximation theorem to the following consequence of Proposition 4.3.

Corollary 5.3. Let t ∈ (−π
4 ,

π
4 ) and a µ-measurable Borelian set A. Then one has

(5.6) ν0(A) 6 νt (φt(A))cos(2t)| d2 (p−1)−2|
.

Moreover if we define

(5.7) At,λ := {u0 ∈ X0, ‖φtu0‖Lp+1 > λ} ,
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then

(5.8) ν0(At) 6 e−
λp+1
p+1 .

Proof. Let A be a Borelian set of X0 and t ∈
(
−π

4 ,
π
4
)
. Applying Proposition 4.3 we have:

ν0(φ−1
t A) 6 νt

(
φNt (φ−1

t A))
)cos(2t)| d2 (p−1)−2|

.

Given ε > 0, thanks to (5.5) we fix N such that φNt (φ−1
t A) ⊂ A+Bε. For such N we can write

ν0(φ−1
t A) 6 νt (A+Bε)cos(2t)| d2 (p−1)−2|

.

Letting ε → 0 and using the regularity of the measure µ established in Section 2.2, and the
Lebesque convergence theorem we have ν0(A+Bε)→ ν0(A). Changing A in φtA this gives (5.6).

Let us prove (5.8). Using (5.6) (assuming that At,λ is a Borelian set), and remarking that by
definition of At we have ‖φtu0‖ > λ for every u0 ∈ At so that:

ν0(A) 6 νt(φtA)cos(2t)
d
2 (1−p)+2

6
(
e
− cos(2t)

d
2 (p−1)−2 λp+1

p+1 µ(φtA)
)cos(2t)

d
2 (1−p)+2

6 e−
λp+1
p+1 ,

where we used that µ(φtA) 6 1 in the last line.
The set At,λ is indeed a Borelian set. At,λ is indeed an open set: let un ∈ X0 \ At,λ, a

converging sequence, that is un → u in any H−σ and ‖un‖Lp+1 6 λ. We observe that the
sequence (un)n>0 being bounded in Lp+1, up to extraction we have un ⇀∗ u in Lp+1 so that

‖u‖Lp+1 6 lim inf
n→∞

‖un‖Lp+1 ,

and thus the claim. �

Remark 5.4. The estimate (5.8) is better than the bound given by ν0(A) 6 µ(A)cos(2t)
d
2 (p−1)−2

,
which amounts to saying ν(A) 6 1 when p ∼ 1 + 4

d .

We are now ready to state our first global result. The first version is an arbitrary large
measure existence result of solutions defined on [−t, t] for arbitrary t.

Lemma 5.5 (Quasi almost sure global existence). Let d > 2, p ∈ (1, 1 + 4
d) and σ ∈ (0, σ(p, d)).

Let η > 0 and 0 < t < π
4 . There exists a set Gη,t such that µ(X0 \ Gη,t) 6 η and such that

for every initial data u0 ∈ Gη,t there exist a unique solution v(t′) = e−it
′Hu0 +w(t′) to (HNLS)

which is defined on [−t, t] and satisfies

(5.9) ‖w(t′)‖Hσ . log
1
2

(1
η

)(
π

4 − t
) d

4 (p−1)−1 ∣∣∣∣log
(
π

4 − t
)∣∣∣∣ 12 ,

for every |t′| 6 t, and where the implicit constant only depends on p and d. Moreover:

(5.10) ‖w‖Lq((0,t),Lr) . log
1
2

(1
η

)(
π

4 − t
) d

4 (p−1)−1 ∣∣∣∣log
(
π

4 − t
)∣∣∣∣ 12 ,

for every σ-Schrödinger admissible pair (q, r) and every |t′| 6 t.

Proof. Let t, η as in the lemma and λ > 0. We denote by Gλ the set of good initial data made
of u0 ∈ X0 which give rise to local solutions v = vL + w of the Cauchy problem (HNLS) until
time t and which furthermore satisfy the bounds ‖w‖Lq([0,t],Wσ,r) 6 2λ for 0 6 t′ 6 t and any
Schrödinger admissible pair (q, r). Let Bλ := X0 \ Gλ, which is the set of bad initial data.
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First, observe that on the compact interval [0, t] a uniform local existence time τ can be picked.
Thanks to Proposition 3.3 this local existence time has the form τ ∼ λ−α

(
π
4 − t

)β for irrelevant
constants α, β > 0. Then, for the solution v = vL +w to exist on [nτ, (n+ 1)τ ] , Proposition 3.3
proves that it is sufficient for u(nτ) to belong to X0 \ A◦λ. Under this condition the Cauchy
problem can be solved until time (n+ 1)τ . Thus we have obtained that

b t
τ
c⋂

j=0
(φnτ )−1 (X0 \A◦λ) ⊂ Gλ ,

and taking the complementary set gives

Bλ ⊂
b t
τ
c⋃

j=0
(φnτ )−1A◦λ .

We use Corollary 5.3 to infer

ν0(Bλ) 6
b t
τ
c∑

n=0
ν0
(
(φnτ )−1A◦λ

)
6
b t
τ
c∑

n=0
νt (A◦λ)cos(2nτ)| d2 (p−1)−2|

.

Using that νt(A◦λ) 6 µ(A◦λ) and the bound nτ 6 t leads to

ν0(Bλ) 6
b t
τ
c∑

n=0
µ (A◦λ)(

π
4−t)|

d
2 (p−1)−2|

6 tτ−1e−cλ
2(π4−t)

2− d2 (p−1)
,

where we used Corollary 2.5 in the last inequality. Recalling the expression of τ in terms of(
π
4 − t

)
and λ, proves that in order to ensure ν0(Bλ) 6 η one can choose

λ ∼ log
1
2

(1
η

)(
π

4 − t
) d

4 (p−1)−1 ∣∣∣∣log
(
π

4 − t
)∣∣∣∣ 12 ,

which ends the proof. �

Now we transform the previous quasi almost-sure lemma into an almost sure global existence
result using a Borel-Cantelli argument.

Corollary 5.6. Let d > 2, p ∈
(
1, 1 + 4

d

)
and σ ∈ [0, σ(p, d)). There exists a set G of full

measure, i.e., µ(G) = 1 such that for u0 ∈ G there exists a unique global solution v = vL + w
to (HNLS), where vL(t) = e−itHu0 and w(t) ∈ Hσ satisfies the bound

(5.11) ‖w‖Lq([−t,t],Wσ,r) 6 C(u0)
(
π

4 − |t|
) d

4 (p−1)−1 (
1 +

∣∣∣∣log
(
π

4 − |t|
)∣∣∣∣) 1

2
,

for every |t| < π
4 and every Schrödinger admissible pair (q, r). Moreover there exist constants

c, C > 0 such that:

(5.12) µ(u0, C(u0) > λ) 6 Ce−cλ2
.

Proof. First note that by time reversibility of (HNLS) it is sufficient to prove the result on [0, π4 ).
Let tn → π

4 . For n > 1 we set Bn := B 1
n2 ,tn

= X0 \G 1
n2 ,tn

and observe that µ(Bn) 6 1
n2 which

forms a convergent sequence, thus

µ

⋃
k>n

Bk

 6∑
k>n

µ(Bk) −→
n→∞

0 .
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Letting B := lim sup
n→∞

Bk =
⋂
n>1

⋃
k>n

Bk we have:

µ

(
lim sup
n→∞

Bn

)
6 lim sup

n→∞
µ

⋃
k>n

Bk

 −→ 0 ,

thus G := X0 \B is a set of full measure and moreover by definition of G, for every u0 ∈ G there
exist an n such that u0 ∈ Gk for all k > n. Thus we obtain that such u0 give rises to global
solutions satisfying (5.11).

Finally in order to prove (5.12) we observe that for a given t > 0, {C(u0) > λ} ⊂ B
e−cλ2 ,t

which yields the result. �

Next we want to estimate the Lp+1 norm of the solutions. We will distinguish two cases and
introduce a real number pmax defined by

pmax(d) := 5− d+
√

9d2 − 2d+ 9
2(d− 1) < 1 + 3

d− 2

if d 6 7 and if d > 8 then pmax(d) is the only real root of the polynomial

Pd = (d− 2)X3 + (d− 4)X2 − 6X − 2d− 4 .

Note that for d > 8 one has

pmax(d) > min
{

5− d+
√

9d2 − 2d+ 9
2(d− 1) , 1 + 3

d− 2

}
.

To prove this fact, we observe that the discriminant of Pd is negative, at least for d > 8 and thus
Pd has a unique real root. Note that min{5−d+

√
9d2−2d+9

2(d−1) , 1+ 3
d−2} = 1+ 3

d−2 as soon as d > 9. To
conclude we need to show that Pd(1 + 3

d−2) < 0 which is equivalent to d2− 10d+ 7 > 0, satisfied
for d > 9. Similarly one has Pd(5−d+

√
9d2−2d+9

2(d−1) ) < 0 for d = 8. We also have pmax(d) > 1 + 4
d if

d 6 7 with similar computations.

Lemma 5.7. Let d > 2, p ∈ (1, pmax(d)) and σ ∈ (0, σ(p, d)). Let also η > 0 and |t| < π
4 . There

exists a set Gη,t ⊂ X0 such that µ(X0 \ Gη,t) 6 η and such that for all u0 ∈ Gη,t, there exists
a unique solution to (HNLS) with initial data u0 which writes v(t′) = e−itHu0 + w(t′) where
w ∈ Y σ. Furthermore this solution satisfies

(5.13) ‖w(t′)‖Lp+1 . log
1
2

(1
η

) ∣∣∣∣log
(
π

4 − |t|
)∣∣∣∣ 12 ,

for t′ 6 t with the implicit constant only depending on p and d.

Proof. Again we only deal with the forward in time part of the estimate, by time reversibility.
Let 0 < t < π

4 , η > 0 and p as in the lemma. Let also τ > 0 be a local existence time, given by
Proposition 3.3, which we choose uniform in [0, t], and which we may shrink in the sequel. We
also claim that we can prove the result on v rather than w since estimates of this kind on the
linear part vL are granted by Lemma 2.5.

We start with the case p > 1+ 2
d−1 . We set tn := nτ for n = 0, . . . , b tτ c. Let t

′ ∈ [tn, tn+1) and
write v(t′) in terms of v(tn) as the solution of the initial value problem at tn using the Duhamel
formula:

(5.14) v(t′) = e−i(t
′−tn)Hv(tn)− i

∫ t′

tn
e−i(t

′−s)H
(
cos(2s)

d
2 (p−1)−2|v(s)|p−1v(s)

)
ds .
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The triangle inequality and the dispersion estimates Lp+1 → L
p+1
p given by Proposition 3.2 yield

‖v(t′)‖Lp+1 6 ‖v(tn)‖Lp+1 + ‖(e−i(t′−tn) − id)v(tn)‖Lp+1︸ ︷︷ ︸
I

(5.15)

+
∫ t′

tn

1

|t− s|d
(

1
2−

1
p+1

) cos(2s)
d
2 (p−1)−2‖v(s)‖pLp+1 ds

︸ ︷︷ ︸
II

.

In the sequel we estimate the terms I and II differently.
For II we use that

cos(2s) &
(
π

4 − t
)

for s ∈ [tn, tn+1]. Then for parameters γ, γ′ > 1 satisfying 1
γ + 1

γ′ = 1 and Hölder’s inequality:

II .
(
π

4 − t
) d

2 (p−1)−2 ∫ t′

tn

1

|t′ − s|d
(

1
2−

1
p+1

) ‖v(s)‖pLp+1 ds

.
(
π

4 − t
) d

2 (p−1)−2
(∫ t′

tn
|t′ − s|−dγ

(
1
2−

1
p+1

)
ds
) 1
γ
(∫ t′

tn
‖v(s)‖pγ

′

Lp+1 ds
) 1
γ′

.
(
π

4 − t
) d

2 (p−1)−2
τ

1
γ
−d
(

1
2−

1
p+1

)
‖v‖p

Lpγ
′

[tn,tn+1]L
p+1

,

provided the integrability condition γd
(

1
2 −

1
p+1

)
< 1 which we write conveniently in the form

(5.16) 1
γ
> d

(1
2 −

1
p+ 1

)
.

Now we deal with the case d 6 8 and d > 8 separately.

Case 1. Assume that d 6 8 so that σ(p, d) = 1
2 . Recall that by the local Cauchy-theory and for

every Schrödinger admissible pairs (q, r), v also enjoys bounds of the form

‖v‖Lq[tn,tn+1]L
r .

(
π

4 − tn
)−α

τβλp

for some α, β > 0 which only depend on d and p and are given by Lemma 3.5. Indeed such a
bound can be obtained for w = v − wL associated to initial data v(tn) in X0 \ A◦λ where A◦λ is
given by Proposition 3.3; and the same estimates are obtained for vL as soon as r < 2 + 4

d .
Thus the norm Lpγ

′
Lp+1 is 1

2 -Schrödinger admissible1 if and only if
(5.17) pγ′ > 2 ,

(5.18) 1
pγ′

>
d− 1

4 − d

2(p+ 1) ,

and

(5.19) d− 1
4 − d

2(p+ 1) > 0 .

Condition (5.19) is equivalent to p > 1 + 2
d−1 which is satisfied, since p > 1 + 2

d by hypothesis.
Now observe that once conditions (5.16), (5.17) and (5.18) are satisfied, we obtain

(5.20) II 6
(
π

4 − t
)−α

τβλp ,

1Note that p+ 1 < 2 + 4
d
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for α = α(p, d) > 0 and β = β(p, d) > 0.
We remark that Conditions (5.16) and (5.17) are satisfied as soon as

(5.21)
{
p < d+3

d−3
p 6 5−d+

√
9d2−2d+9

2(d−1) .

Then one has 5−d+
√

9d2−2d+9
2(d−1) 6 d+3

d−3 . We obtain that the conditions (5.16), (5.17) and (5.18) are
satisfied for p < pmax, which is satisfied by hypothesis.

Case 2. Assume that d > 8 and p > 1 + 3
d−2 . With σ = σ(p, d)−, conditions (5.16), (5.17)

and (5.18) become:

(5.22)


1
γ > d

(
1
2 −

1
p+1

)
pγ′ > 2

1
γ′ > p

2

(
d
2 − σ(p, d)− d

p+1

)
,

which is equivalent to

(5.23)
{

(d− 2)p2 + (d− 6)p− 2d− 4 < 0
(d− 2)p3 + (d− 4)p2 − 6p− 2d− 4 < 0(d− 2)p2 + (d− 4)p− 2d− 2 > 0 .

We observe that the second condition is precisely p < pmax(d) and that the first is equivalent to
p 6 d+2

d−2 = 1+ 4
d−2 which is satisfied. The last condition is equivalent to p > 4−d+

√
9d2−16d

2(d−2) which
is smaller that 1 + 3

d−2 , so that the previous conditions are satisfied if and only if p < pmax(d).
We turn to estimating I. In order to do so, applying a Sobolev embedding in time and

switching derivatives from time to space and provided we fix ε > 0 sufficiently small, gives the
existence of constants C := Cε, β := β(ε) and an integer q := q(ε) satisfying

I 6 Cτβ‖S(· − tn)v(tn)‖Lq
〈·〉−2 dt

(R,Wε,p+1) .

A complete proof ot this claim is postponed to Lemma A.2 which we refer to for the details.
We introduce the sets

Bn,λ :=

u0 ∈ X0, ‖S(· − tn)φtnv0‖Lq
〈·〉−2 dt

(R,Wε,p+1) > λ

(
π

4 − tn
)−α(p,d)

2


where α(p, d) = d

2(p− 1)− 2. Let also

B′n,δ := {v0 ∈ X0, ‖S(· − tn)v0‖Lq
〈·〉−2 dt

(R,Wε,p+1) > δ} .

Then applying Proposition 4.3 gives

ν0(Bn,λ) 6 νtn (φtnBn,λ)cos(2tn)α(p,d)

6 µ (φtnBn,λ)cos(2tn)α(p,d)

6 µ
(
B′n,λ(π4−tn)−α(p,d)

)cos(2tn)α(p,d)

.

Now we claim that there exists constants C, c > 0 only depending on d, p such that that

(5.24) µ(B′n,δ) 6 e−cδ
2
.

Assuming (5.24), we conclude that:

(5.25) ν0(Bn,λ) 6 e−cλ2
.

For
u0 ∈ (φtn)−1

(
X0 \A◦λ(π4−tn)−α(p,d)

)
∩
(
X0 \Bn,λ

)
∩
(
X0 \Atn,λ

)
,
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where we recall that Atn,λ is defined by (5.7), we have φtnu0 ∈ X0 \A◦
λ(π4−tn)−α(p,d) and then:

(5.26) I . τβ
(
π

4 − t
)−α2

λ .

Taking into account (5.26) and (5.20) in (5.15) imply that we can adjust α̃, β̃ > 0 such that

(5.27) τ ∼ λ−β̃
(
π

4 − t
)−α̃

and ‖v(t′)‖Lp+1 6 2λ for t′ ∈ [tn, tn+1] ,

Let us prove (5.24). It is sufficient to prove that
(5.28) ‖S(·)f‖Lp0Ω Lq

〈·〉−2 dt
(R,Wε,p+1) .

√
p0 ,

at least for p0 > max{q, r}. Assuming such a bound gives the claim using the Markov inequality,
and we skip the details, see Appendix A of [BT08a] for instance.

It remains to prove (5.28). Let p0 > max{q, r}. By Minkowski’s inequality and Theorem 1.8
we get

‖S(·)f‖Lp0Ω Lq
〈t〉−2dt

(R,Wε,p+1) .

∥∥∥∥∥∥∥
∥∥∥∥∥∥
∑
n>0

eitλ
2
n

λ1−ε
n

gnen

∥∥∥∥∥∥
L
p0
Ω

∥∥∥∥∥∥∥
Lq
〈t〉−2dt

(R,Wε,p+1)

.
√
p0‖(λ−1+ε

n en)‖
Lp+1
x `2N

.

Remark that we used the finiteness of the measure 〈t〉−2 dt. Another use of the Minkowski
inequality, recalling that p+ 1 ∈

(
2, 2d

d−2

)
and Lemma 2.4 finally prove the claim.

To conclude the proof, we repeat again the usual argument. The set of good initial data Gλ
is defined as the set of initial data u0 ∈ X0 which give rise to solutions defined on [0, t] and such
that ‖v(t′)‖Lp+1 6 2λ for every t′ 6 t. We then observe that the analysis developed to get the
bound (5.27) leads to the inclusion:

b t
τ
c⋂

n=0

(
(φnτ )−1 (X0 \A◦λ(π/4−t)−α(p,d)) ∩

(
X0 \Bn,λ

)
∩
(
X0 \Atn,λ

))
⊂ Gλ .

The set of bad initial data Bλ := X0 \Gλ then satisfies

ν0(Bλ) . tλβ̃
(
π

4 − t
)−α̃

e−cλ
2
,

where we used Lemma 4.3 to bound

ν0
(
(φnτ )−1

(
X0 \A◦λ(π/4−t)−α(p,d)

))
6 νnτ

(
X0 \A◦λ(π/4−t)−α(p,d)

)cos(2tn)α(p,d)

6 e−cλ
2
,

and the expression of τ . Finally the measure of this set is made smaller than η by taking
λ ∼ log

1
2
(

1
η

) ∣∣log
(
π
4 − |t|

)∣∣ 12 , which ends the proof.
Finally we treat the case p < 1 + 2

d−1 , which is much simpler, and sufficient for proving the
lemma in dimension d = 2. Then for σ < 1

2 close enough to 1
2 we have Hσ ↪→ Lp+1. Then

(5.29) ‖v(tn)− v(t)‖Lp+1 . ‖v(tn)− v(t)‖Hσ .
Then we adjust τ such that if v(tn) ∈ X0 \ A◦λ and |t − tn| 6 τ then by the local Cauchy
theory of Proposition 3.3, there exists α, β > 0 depending on p, d such that ‖v(tn)− v(t)‖Hσ .
λτβλ

(
π
4 − tn

)−α, which gives the control needed on the variation of ‖v(t)‖Lp+1 . Then the same
globalising argument as above finishes the proof. Since the proof in this case is very similar to
the one in [BT20] we refer to the latter article for details. �
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Remark 5.8. Note that pmax(d) is greater than 1 + 4
d as soon as d 6 7. This is indeed easily

checked on a computer, but can also proved taking advantage of the fact that d 7→ pmax(d)−1− 4
d

is monotone, thus it is sufficient to check that pmax(7)pmax(8) < 0 which is true by elementary
computations. This proves that for d 6 7 we have access to logarithmic growth bounds for
‖v(t)‖Lp+1 and will be crucial in the proof of Theorem 1.3.

From there we can deduce exactly as in Corollary 2.5 the following global estimate.

Corollary 5.9. Let d > 2 and p ∈ (1, pmax(d)). There exists ε0 > 0 and a set G ⊂ X0 of full
measure, i.e., µ(G) = 1 such that for all u0 ∈ G and all ε ∈ [0, ε0] there exists a unique global
solution v(t) = e−itHu0 + w(t) to (HNLS) with initial data u0 which furthermore satisfies

(5.30) ‖w(t)‖Wε,p+1 . C(u0)
∣∣∣∣log

(
π

4 − |t|
)∣∣∣∣ 12 ,

for every |t| < π
4 . Moreover there exist c, C > 0 such that

µ(C(u0) > λ) . e−cλ2
.

Proof. We only rapidly explain how we obtain the Wε,p+1 estimates. This follows from the
proof of Lemma 5.7, where we can multiply equation (5.14) by H

ε
2 , then all the estimates are

essentially the same provided ε > 0 is small enough. We use in particular that we use non-
endpoints estimates, for which there is always room for an ε modification of the parameters. �

6. Scattering for (NLS) and end of the proof

Proof of Theorem 1.2. This is a consequence of the bound (5.13) of Corollary 5.9 and an appli-
cation of the lens transform, see Remark B.3. �

In order to prove Theorem 1.3 we need an Hε scattering result for (HNLS). The main
ingredient in the proof is the following proposition.

Proposition 6.1. Let d ∈ {2, 24} and p ∈
(
1 + 2

d , 1 + 4
d

)
. For almost every u0 ∈ X0 there

exists a unique global solution v to (HNLS). Moreover:
(i) There exist σ, δ > 0 only depending on p and d, and u± ∈ H−σ such that

(6.1) ‖v(t)− e−itH(u0 − u±)‖H−σ . C(u0)
(
π

4 − t
)δ
−→
t→±π4

0 ,

which is scattering in H−σ.
(ii) There exists ε > 0 such that:

(6.2) ‖v(t)‖Hε .ε C(u0)
for all t ∈

(
−π

4 ,
π
4
)
.

In both cases there exist numerical constants c, C > 0 such that µ(C(u0) > λ) 6 Ce−cλ.

Proof. Again we present the proof for the forward scattering part. We work with initial data in a
set of full measure G which may be taken as the intersection of the full measure sets constructed
in Corollary 5.6 and Corollary 5.9. Then every u0 ∈ G gives rise to a global solution to (HNLS),

v(t) = uL(t) + w(t) = e−itHu0 + w(t)
satisfying the bounds (5.11) and (5.13). Up taking the intersection with another set of full
measure we can always assume that ‖uL‖LqWs,r <∞ as long as (q, r) satisfies the hypothesis of
Lemma 2.4, and more precisely

µ(u0, ‖uL‖LqWs,r > λ) 6 Ce−cλ2
.
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We start the proof with the case p < pmax(d) and we will use Corollary 5.9. To start the proof
we write

(6.3) eitHw(t) = −i
∫ t

0
eisH

(
cos(2s)

d
2 (p−1)−2|uL(s) + w(s)|p−1(uL(s) + w(s))

)
ds .

By the Sobolev embedding set σ > 0 such that L
p+1
p ↪→ H−σ, one can choose for example

σ := d
(

1
2 −

1
p+1

)
. We claim that there exists δ > 0 such that

(6.4)
∫ π

4

t
| cos(2s)|

d
2 (p−1)−2‖(uL(s) + w(s))|uL(s) + w(s)|p−1‖H−σ ds .

(
π

4 − t
)δ

.

Assuming (6.4) proves that the integral in (6.3) converges absolutely inH−σ and thus convergent
to some u+ ∈ H−σ and proves (6.1).

In order to prove (6.4) we use the Sobolev embedding and the bound cos(2s) &
(
π
4 − s

)
to get∫ π

4

t
| cos(2s)|

d
2 (p−1)−2‖(uL(s) + w(s))|uL(s) + w(s)|p−1‖H−σ ds

.
∫ π

4

t
| cos(2s)|

d
2 (p−1)−2‖uL(s) + w(s)‖pLp+1 ds

.
∫ π

4

t

(
π

4 − s
) d

2 (p−1)−2
‖uL(s)‖pLp+1 ds+

∫ π
4

t

(
π

4 − s
) d

2 (p−1)−2
‖w(s)‖pLp+1 ds

. ‖uL‖pLprLp+1

(∫ π
4

t

(
π

4 − t
)r′( d2 (p−1)−2)

ds
) 1
r′

+ C(u0)p
∫ π

4

t

(
π

4 − t
) d

2 (p−1)−2 ∣∣∣∣log
(
π

4 − t
)∣∣∣∣ p2 ds

where in the last line we used Hölder’s inequality with 1
r + 1

r′ = 1 and the bounds (5.13). As
explained above, without loss of generality we can asume ‖uL‖LprLp+1 to be finite. It remains
to choose r′ such that r′

(
d
2(p− 1)− 2

)
> −1 which ensures that the previous integrals are

absolutely convergent and that they can be bounded by a positive power of π4−t. This gives (6.4).
It remains to prove (6.2). First observe that w satisfies

i∂tw(t)−Hw(t) = cos(2t)
d
2 (p−1)−2(uL(t) + w(t))|uL(t) + w(t)|p−1 ,

then apply H
ε
2 , multiply by H

ε
2w(t) and integrate in space to obtain:

d
dt
(
‖w(t)‖2Hε

)
= 2 cos(2t)

d
2 (p−1)−2 Im

(∫
R2
H

ε
2
(
|uL(t) + w(t)|p−1(uL(t) + w(t))

)
H

ε
2w(t) dx

)
. cos(2t)

d
2 (p−1)−2‖(uL(t) + w(t))|uL(t) + w(t)|p−1‖

Wε,
p+1
p
‖w(t)‖Wε,p+1 ,

where we used the Hölder inequality. By Sobolev’s product laws and the minoration of the cos
function we obtain

d
dt
(
‖w(t)‖2Hε

)
.
(
π

4 − t
) d

2 (p−1)−2 (
‖uL(t)‖p−1

Lp+1 + ‖w(t)‖p−1
Lp+1

)
× (‖uL(t)‖Wε,p+1 + ‖w(t)‖Wε,p+1) ‖w(t)‖Wε,p+1 .

Then we bound the Lp+1 norms by the Wε,p+1 norms and also use w(t) = v(t) − uL(t), which
leads to

d
dt
(
‖w(t)‖2Hε

)
.
(
π

4 − t
) d

2 (p−1)−2 (
‖uL(t)‖p+1

Wε,p+1 + ‖v(t)‖p+1
Wε,p+1

)
.
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After integration we have

‖w(t)‖2Hε 6 ‖w0‖2Hε︸ ︷︷ ︸
=0

+C
∫ t

0

(
π

4 − s
) d

2 (p−1)−2 (
‖uL(t)‖p+1

Wε,p+1 + ‖v(t)‖p+1
Wε,p+1

)
ds

. ‖uL‖p+1
L(p+1)rWε,p+1

(∫ π
4

0

(
π

4 − t
)r′( d2 (p−1)−2)

ds
) 1
r′

+ C(u0)p+1
∫ π

4

0

(
π

4 − t
) d

2 (p−1)−2 ∣∣∣∣log
(
π

4 − t
)∣∣∣∣ p+1

2
ds ,

where we used Hölder’s inequality with 1
r + 1

r′ = 1 and (5.13). As above without loss of generality
we can assume ‖uL‖LprWε,p+1 < ∞. Then choosing r′ such that r′

(
d
2(p− 1)− 2

)
> −1 all the

above integrals are convergent, which proves (6.2).
Now we explain the case p > pmax(d). As remarked before this case is only necessary when

d > 8. Let p ∈
[
pmax(d), 1 + 4

d

)
. In order to prove (6.1) we need to prove that there exists δ > 0

such that (6.4) holds. Recalling the bounds on uL all which is needed is the existence of δ > 0
such that

(6.5)
∫ π

4

t
| cos(2s)|

d
2 (p−1)−2‖w(s)‖pLp+1 ds .

(
π

4 − t
)δ

.

Similarly, in order to prove (6.2), an examination of the above proof shows that one only needs
to prove that for sufficiently small ε > 0 the integral

(6.6)
∫ π

4

0
| cos(2s)|

d
2 (p−1)−2‖w(s)‖p+1

Lp+1 ds ,

is finite. The proof of (6.5) and (6.6) are essentially the same, thus the proof of (6.5) is carried
out in details and we only explain the modifications for (6.6). We write α(p, d) := d

2(p− 1)− 2
until the end of the proof and set tn := π

4 (1− 2−n).
The key fact for proving (6.5) is the following: we claim that the real sequence (un)n>0 defined

by

un :=
∫ tn

0
| cos(2s)|α(p,d)‖w(s)‖pLp+1 ds

is a Cauchy sequence. In order to prove this claim, we use the bound cos(2s) &
(
π
4 − s

)
and

Hölder’s inequality with 1
γ + 1

γ′ = 1, where γ such that there exists σ ∈ [0, σ(p, d)) such that
(pγ′, p + 1) is (σ(p, d))-Schrödinger admissible, that is pγ′ > 2 and 2

pγ′ + d
p+1 = d

2 − σ. Note
that the condition pγ′ > 2 can be written as d

2 −
d
p+1 − σ(p, d) < 1 which is equivalent to

(d− 2)p2 + (d− 6)p− 2d− 4 < 0, that is p < d+2
d−2 . This last inequality is always satisfied in our

case. We also mention that the σ(p, d) admissibility also requires that d
2 −

d
p+1 − σ(p, d) > 0,

which is equivalent to p > 1
−d+4+

√
9d2−16d2(d− 2). Since p > 1 + 3

d−2 >
1

−d+4+
√

9d2−16d2(d− 2),
this last inequality is, again, always satisfied.

We can summarise the above discussion: provided α(p, d) + 1
γ > 0, which will be checked

later, we obtain:

|un+1 − un| 6
∫ tn+1

tn

(
π

4 − s
)α(p,d)

‖w(s)‖pLp+1 ds

.
(
π

4 − tn
)α(p,d)+ 1

γ

‖w‖p
Lpγ
′

[tn,tn+1]L
p+1
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.
(
π

4 − tn
)α(p,d)+ 1

γ

‖w‖p
Y
σ(d,p)−
[tn,tn+1]

.

Then the bound obtained in Corollary 5.6 yields

|un+1 − un| .
(
π

4 − tn
)α(p,d)+ 1

γ
(
π

4 − tn+1

) pα(p,d)
2

. 2−n(δ+ε0) ,

with δ := p+2
2 α(p, d) + 1

γ and ε0 abritriraliy small. Assume that δ > 0, then we conclude that
(un)n>0 is a Cauchy sequence and moreover if we choose n such that π

4 − t ∈ [2−(n+1), 2−n] then
we can bound:∫ π

4

t
| cos(2s)|

d
2 (p−1)−2‖w(s)‖pLp+1 ds .

∑
k>n

2−kδ . 2−nδ .
(
π

4 − t
)δ

.

This proves (6.5), provided we show that δ > 0. Before checking this fact we run the same
analysis for (6.6) in order to obtain the inequalities that the parameters must satisfy. This time
we set

zn :=
∫ tn

0
(cos(2s))α(p,d)‖w(s)‖p+1

Wε,p+1 ds ,

and we only need to prove that this sequence forms a Cauchy sequence. Again we use Hölder’s
inequality with 1

γ + 1
γ′ = 1 such that there exists σ ∈ [0, σ(p, d) such that (γ′(p + 1), p + 1) is

σ(p, d)-Schrödinger admissible, that is γ′(p+ 1) > 2 and 2
(p+1)γ′ + d

p+1 = d
2 − σ. The condition

γ′(p+1) > 2 is equivalent to p 6 d+2
d−2 as above, which is satisfied. Then, with the same estimates

as above and provided α(p, d) + 1
γ > 0 we arrive at

|zn+1 − zn| .
(
π

4 − tn
)α(p,d)+ 1

γ

‖v‖p+1
Y
σ(p,d)−
[tn,tn+1]

.

Then we use the bound

‖v‖
Y
σ(p,d)−
[tn,tn+1]

.
(
π

4 − tn+1

)α(p,d)
2 +ε0

obtained in Corollary 5.6, and where ε0 > 0 is arbitrarily small; and the fact that
(
π
4 − tn

)
∼

C2−n, in order to get
|zn+1 − zn| . 2−n(δ̃+ε0)

where δ̃ := (p+ 3)α(p, d)
2 + 1

γ
. Assuming that δ̃ > 0 proves that (un)n>0 is a Cauchy sequence,

and ends the proof of (6.6)
We need to find the range of p (depending on d) for which δ, δ̃ > 0. Note that would

immediately imply α(p, d) + 1
γ > 0 which was a necessary condition to bound |un+1 − un| and

|zn+1 − zn|.
The claim δ > 0 is equivalent to:

p+ 2
2

(
d

2(p− 1)− 2
)

+ 1− p

2

(
d

2 − σ(d)− d

p+ 1

)
,

which after simplification reads
Qd(p) := 2p3 + dp2 + (d− 6)p− 2d− 4 > 0 .

Then we can compute that, as a polynomial in p, discrim(Qd) = 9d4 − 76d3 + 36d2 − 1728d
thus Qd has exactly one real root if d 6 9 and exactly three for d > 10. In any cases we
check that Qd has exactly one positive real root for d > 8. Let us denote by pd this root and
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we claim that pmax(d) > pd. To verify this statement we remark that both Pd and Qd are
increasing [1, 1 + 4

d ] thus we only need to check that Pd 6 Qd in that region, which is equivalent
to (d−4)p2−4p−d < 0 which is satisfied for p > d

d−4 ( which is greater than 1 + 4
d)) and d > 8.

In a similar fashion, δ̃ > 0 is equivalent to:
p+ 3

2

(
d

2(p− 1)− 2
)
− p+ 1

2

(
d

2 − σ(p, d)− d

p+ 1

)
> 0 ,

which after simplification reads

Rd(p) := p2 + d

2p−
d

2 − 3 > 0 ,

that is p > −d
4 + 1

4
√
d2 + 8d+ 48. We claim that

pmax(d) > −d4 + 1
4
√
d2 + 8d+ 48 := p′d

if and only if d 6 24. This claim is equivalent to P24(p′24)P25(p′25) < 0. This reduces to
(813
√

51− 5806)(44181
√

97− 435131) < 0 which is the case. �

Proof of Theorem 1.3. In order to end the proof of the theorem we assume that there exist
δ, σ, ε > 0 such as constructed in Proposition 6.1. This immediately proves part (i) of Theo-
rem 1.3.

We deduce that u+ ∈ Hε. In fact, eitHw(t) being bounded in the Hilbert space Hε we can
extract a subsequence, weakly converging to some ũ+ ∈ Hε but this convergence also holds in
H−σ where eitHw(t)→ u+ thus by uniqueness of the weak limit, u+ = ũ+ ∈ Hε.

We claim that the bound

(6.7) ‖eitHw(t)− u+‖Hε0 .
(
π

4 − t
)(2d+1)ε0

implies the estimate (1.2). Indeed, let u be the solution to Schrödinger equation (NLS) associated
to u0. We denote by s = tan t

2 the time variable of u where t is the time variable of v := Lu. We
refer to Appendix B for details. Then from Lemma B.1 we have

‖u(s)− eis∆y(u0 + u+)‖Hε0 .
(
π

4 − t(s)
)−2dε0

‖Lu− L(eis∆y(u0 + u+))‖Hε0

.
(
π

4 − t(s)
)−2dε0

‖w(t(s))− e−it(s)Hu+‖Hε0

.
(
π

4 − t(s)
)−2dε0

‖eit(s)Hw(t(s))− u+‖Hε0

−→
s→∞

0 ,

where we used that v(t(s)) = w(t(s)) + e−it(s)Hu0 and (6.7).
In order to prove (6.7), let θ ∈ [0, 1] and introduce σ(θ) := −σθ + (1 − θ)ε. Interpolating

between (6.1) and (6.2) we have

‖eitHw(t)− u+‖Hσ(θ) 6 ‖eitHw(t)− u+‖1−θHε ‖e
itHw(t)− u+‖θH−σ

. C(ε)1−θ‖eitHw(t)− u+‖θH−σ

.
(
π

4 − t
)θδ

.

We claim that we can find ε0 ∈ (0, ε) satisfying σ(θ) = ε0 and δθ = (2d+ 1)ε0. Indeed one can
take

ε0 := ε

1 + 2d+1
δ (σ + ε)

.
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Finally in order to prove (1.3), observe that by properties of the lens transform we have
Lu(s) = e−it(s)H(e−is∆yu(s)) and then:

‖e−is∆yu(s)− (u0 + u+)‖Hε0 = ‖eit(s)HLu(s)− (u0 + u+)‖Hε0

= ‖Lu(s)− e−it(s)H(u0 + u+))‖Hε0
= ‖v(t(s))− e−it(s)H(u0 + u+)‖Hε0
−→
s→∞

0 ,

where we used similar computations as above. We have thus proven the convergences (1.2)
and (1.3) at a rate which is

(
π
4 − t(s)

)ε0 as s→∞. To conclude it suffices to remark that:
π

4 − t(s) = 1
2 arctan

( 1
2s

)
∼ C

s
as s→∞ �

Appendix A. Technical estimates in harmonic Sobolev spaces

In thie appendix we recall some well-known facts concerning the harmonic oscillator-based
Sobolev spaces.

Lemma A.1 (Harmonic Sobolev Spaces). The following propertes hold.
(i) For σ ∈ R and p ∈ (1,∞), ‖u‖Wσ,p = ‖H

σ
2 u‖Lp ∼ ‖〈∇〉σu‖Lp + ‖〈x〉σu‖Lp.

(ii) Sobolev embedding: in dimension d, Wσ1,p1 ↪→Wσ2,p2 as soon as
1
p1
− σ1

d
6

1
p2
− σ2

d
.

(iii) For σ > 0, q ∈ (1,∞) and q1, q2, q
′
1q
′
2 ∈ (1,∞] one has

‖uv‖Wσ,q . ‖u‖Lq1‖v‖Wσ,q′1
+ ‖u‖Wσ,q2‖v‖

L
q′2
,

as soon as 1
q

= 1
q1

+ 1
q′1

= 1
q2

+ 1
q′2
.

(iv) (Chain Rule) For s ∈ (0, 1), p ∈ (1,∞) and a function F ∈ C1(R) such that F (0) = 0
and such that there is a µ ∈ L1([0, 1]) such that for every θ ∈ [0, 1]:

|F ′(θv + (1− θ)w)| 6 µ(θ) (G(v) +G(w))
where G > 0; we have

(A.1) ‖F ◦ u‖Ws,p . ‖u‖Ws,p0‖G ◦ u‖Lp1
and

(A.2) ‖F ◦ u− F ◦ v‖Ws,p . ‖u− v‖Ws,p0 (‖G ◦ u‖Lp1 + ‖G ◦ v‖Lp1 )

as soon as 1
p0

+ 1
p1

= 1
p , provided p0 ∈ (1,∞) and p1 ∈ (1,∞).

Proof. (i) is proved in [BTT13]. The other statements are proven for usual Sobolev spaces
in [Tay07] and their readaptation to harmonic Sobolev spaces results from the use of (i). We also
refer to [Den12]. For usual Sobolev spaces, (iii) and (iv) can be found in [Tay07], Chapter 2. �

Our next lemma is a technical estimate which aims at decoupling the norm in time.

Lemma A.2. Let ε > 0, α ∈ (0, 1) and q, r > 1 be such that W
ε
2 ,q(R) ↪→ C0,α(R). Then for

every f ∈ Wε,r holds

‖(e−i(t−t0)H − id)f‖L∞[t0,t0+τ ]L
r . τα‖eitHf‖Lq

〈t〉−2 dt
(R,Wε,r) .

where the implicit constant depends on ε, q and α.
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Proof. Let χ(t) a smooth function such that for |t| 6 π, χ(t) = 〈2π〉−2 and for |t| > 2π one has
χ(t) = 〈t〉−2. Set F (t) := e−i(t−t0)Hf for convenience. Then we use the definition of the C0,α

norm:

‖(e−i(t−t0)H − id)f‖L∞[t0,t0+τ ]L
r 6 |t− t0|α‖F‖C0,α([t0,t0+τ ],Lr)

6 τα‖F‖C0,α([−π,π],Lr) .

Now we use that ‖F‖C0,α([−π,π],Lr) 6 C‖χ(· − t0)F‖C0,α(R,Lr) with a constant C which does not
depend on τ . Combined with the Sobolev embedding W

ε
2 ,q(R) ↪→ C0,α(R) we have:

‖(e−i(t−t0)H − id)f‖L∞[t0,t0+τ ]L
r . τα‖χ(· − t0)F‖

W
ε
2 ,q(R,Lr)

. τα‖χ(t)e−itHf‖
W

ε
2 ,q(R,Lr) .

Now observe that in order to transfer derivatives from time to space we need to commute χ
and 〈Dt〉

ε
2 , which follows from the following observation:

〈Dt〉
ε
2χ =

(
1 +

[
〈Dt〉

ε
2 , χ

]
〈Dt〉

−ε
2 χ−1

)
χ〈Dt〉

ε
2

= (id +A)χ〈Dt〉
ε
2 ,

with A :=
[
〈Dt〉

ε
2 , χ

]
〈Dt〉−

ε
2χ−1. Since χ, χ−1 are zero order pseudodifferential operators and

that 〈Dt〉±
ε
2 are pseudodifferential operators of order ± ε

2 , the pseudodifferential calculus implies
that A is of order −1 which is regularising and finally (id +A) is of order zero, thus continuous
on all Lp spaces, as soon as p ∈ (1,∞), see [Hö65] for instance, and the continuity constant does
not depend on τ . This gives

‖e−itHf‖
W

ε
2 ,q(R,Lr) . ‖〈Dt〉

ε
2χ(t)e−itHf‖Lq(R,Lr)

. ‖χ(t)〈Dt〉
ε
2 e−itHf‖Lq(R,Lr)

= ‖〈Dt〉
ε
2 e−itHf‖Lq

〈t〉−2 dt
(R,Lr) .

Since by definition Dt(eitHf) = H(eitHf) we deduce by the usual functional calculus that
D

ε
2
t (eitHf) = H

ε
2 (eitHf), which ends the proof. �

Appendix B. The lens transform

The lens transform L : S ′(R×Rd)→ S ′(
(
−π

4 ,
π
4
)
×Rd) and its inverse L−1 are defined by the

following formulae

v(t, x) := Lu(t, x) = 1
cos(2t)

d
2
u

(tan(2t)
2 ,

x

cos(2t)

)
exp

(
− i|x|

2 tan(2t)
2

)
,

u(s, y) = L−1v(s, y) = (1− 4s2)−
d
4 v

(arctan(2s)
2 ,

y√
1− 4s2

)
exp

(
i|y|2s√
1− 4s2

)
.

Formal computations show that u solves

i∂su+ ∆yu = 0 on Rs × Rdy and u(0) = u0

if and only if v = Lu solves

i∂tv −Hv = 0 on
(
−π4 ,

π

4

)
× Rdx and v(0) = u0 .
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With the variables s = tan(2t)
2 , or equivalently t = t(s) = arctan(2s)

2 , and y = x
cos(2t) an

elementary computation shows that L maps solution of (NLS) to solution of (HNLS) with the
same initial data. In particular

L(eis∆yv0) = e−it(s)Hv0 .

In the proof of Theorem 1.3 it is needed to compare the Hσ norms of u and the Hσ norms
of v. This will be possible thanks to the following lemma.

Lemma B.1 (Lens Transform). If u and U are related by

u(x) = 1
cos

d
2 (2t)

U

(
x

cos(2t)d
)

exp
(
−ix

2 tan(2t)
2

)
then for any σ ∈ [0, 1] and t ∈

[
0, π4

]
,
‖U‖Hσ . ‖u‖Hσ ,

‖〈·〉σU‖L2(R2) .
(
π

4 − t
)−2dσ

‖u‖Hσ(R2) ,

and
‖U‖Lq 6 cos(2t)d

(
1
2−

1
q

)
‖u‖Lq .

Proof. See [BT20], Lemma A.2 with only minor modification to the d dimensional case. �

Remark B.2. This result shows that estimates at regularity Hσ for u transfers into estimates in
Hσ for U with a loss

(
π
4 − t

)−2dσ. This explains that in the proof of Theorem 1.3 we needed
explicit decay rates on the scattering estimates for (HNLS) in order to be transferred into a
scattering result for (NLS) .

Remark B.3. The last inequality of Lemma B.1 applied to solutions u of (NLS) and the corre-
sponding solution v to (HNLS) implies ‖u(s)‖Lq . ‖v(t(s))‖Lq as soon as q > 1.

Remark B.4. The “lens transform” may look surprising and somehow unexpected. We briefly
explain how one can come up with such a transformation, only using basic insight regarding
the symmetries of (NLS). In fact this heuristic is useful to derive other symmetries or pseudo-
symmetries to the Schrödinger equations, see [DR15] for other instances of pseudo-symmetries
and [MR19] for an application.

To simplify, take p = 1 + 4
d . Our starting point is the scaling symmetry

u(s, y) 7→ uλ(s, y) := 1
λ
d
2
u

(
s

λ2 ,
y

λ

)
.

In order to derive more general symmetries we seek for a scaling, depending on time. We change
variables (t, x) ↔ (s, y) imposing a local scaling symmetry ds = dt

λ(t)2 and dy = dx
λ(t) which can

be integrated as

y = x

λ(s) and s =
∫ t

0

dt′

λ(t′)2 ·

Thus one may seek for a change of variable of the form:

v(t, x) = λ(t)−d/2u
(∫ t

0

dt′

λ(t′)2 ,
x

λ(t)

)
.

This change of variable is not sufficient. Indeed, writing the equation satisfied by v in variables
t, x writes at the first derivatives order:

i∂tv + ∆xv − i
λ′(t)
λ(t) x · ∇xv + · · ·
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which is not the linear Schrödinger equation. However it is possible to multiply by the correct
exponential to eliminate the term x · ∇xv just as in the method of variation of constants. This
leads to the choice

v(t, x) = λ(t)−d/2u
(∫ t

0

dt′

λ(t′)2 ,
x

λ(t)

)
exp

(
i|x|2λ′(t)

4λ(t)

)
.

Now if one wants to compactify time, a usual way to do so is to chose t = 1
2 arctan(2s) which

maps R to [−π
4 ,

π
4 ]. Hence we arrive at the given form.
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