Construction of high regularity invariant measures for the 2D Euler equations and remarks on the growth of the solutions - Archive ouverte HAL
Article Dans Une Revue Communications in Partial Differential Equations Année : 2023

Construction of high regularity invariant measures for the 2D Euler equations and remarks on the growth of the solutions

Résumé

We consider the Euler equations on the two-dimensional torus and construct invariant measures for the dynamics of these equations, concentrated on sufficiently regular Sobolev spaces so that strong solutions are also known to exist. The proof follows the method of Kuksin in [Kuk04] and we obtain in particular that these measures do not have atoms, excluding trivial invariant measures. Then we prove that almost every initial data with respect to the constructed measures give rise to global solutions for which the growth of the Sobolev norms are at most polynomial. To do this, we rely on an argument of Bourgain. Such a combination of Kuksin's and Bourgain's arguments already appear in the work of Sy [Sy19a]. We point out that up to the knowledge of the author, the only general upper-bound for the growth of the Sobolev norm to the 2d Euler equations is double exponential.
Fichier principal
Vignette du fichier
euler2d.pdf (376.39 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04196595 , version 1 (05-09-2023)

Licence

Identifiants

Citer

Mickaël Latocca. Construction of high regularity invariant measures for the 2D Euler equations and remarks on the growth of the solutions. Communications in Partial Differential Equations, 2023, 48 (1), pp.22-53. ⟨10.1080/03605302.2022.2137679⟩. ⟨hal-04196595⟩
16 Consultations
28 Téléchargements

Altmetric

Partager

More