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CONSTRUCTION OF HIGH REGULARITY INVARIANT MEASURES FOR

THE 2D EULER EQUATIONS AND REMARKS ON THE GROWTH OF

THE SOLUTIONS

MICKAËL LATOCCA

Abstract. We consider the Euler equations on the two-dimensional torus and construct invari-
ant measures for the dynamics of these equations, concentrated on sufficiently regular Sobolev
spaces so that strong solutions are also known to exist. The proof follows the method of Kuksin
in [Kuk04] and we obtain in particular that these measures do not have atoms, excluding trivial
invariant measures. Then we prove that almost every initial data with respect to the constructed
measures give rise to global solutions for which the growth of the Sobolev norms are at most
polynomial. To do this, we rely on an argument of Bourgain. Such a combination of Kuksin’s
and Bourgain’s arguments already appear in the work of Sy [Sy19a]. We point out that up to
the knowledge of the author, the only general upper-bound for the growth of the Sobolev norm
to the 2d Euler equations is double exponential.

1. Introduction

1.1. The Euler equations. This article is concerned with the incompressible Euler equations
posed on the torus T

2 of dimension 2:

(E2)







∂tu + u · ∇u + ∇p = 0
∇ · u = 0
u(0) = u0 ∈ Hs(Td,Rd) ,

where s > 0, Hs stands for the usual Sobolev space and the unknowns are the velocity field
u(t) : T2 → R

2 and the pressure p : T2 → R.
We recall that the pressure p can be recovered from u by solving the elliptic problem

−∆p = ∇ · (u · ∇u) on T
2 .

In dimension 2, the vorticity defined as ξ := ∇ ∧ u is a more convenient variable. Taking the
rotational in (E2), the latter can be recast as:

(1.1)

{
∂tξ + u · ∇ξ = 0

ξ(0) = ∇ ∧ u0 ,

where u is recovered from ξ via the Biot-Savart law:

(1.2) K(ξ)(t, x) =
1

2π

∫

T2

ξ(t, y)(x − y)⊥

|x − y|2 dy ,

where we recall that for any y = (y1, y2) ∈ T
2 we define y⊥ = (−y2, y1).

The Cauchy problem for (E2) is well-undestood:

Theorem 1.1 (Wolibner, [Wol33]). Let s > 2. The Cauchy problem for (E2) is globally well-
posed in C0(R+, Hs(T2,R2)).

1.2. Main results.
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1.2.1. Invariant measures for (E2). In this article we first construct invariant measure for (E2)
supported at high regularity.

Theorem 1.2. Let s > 2. There exists a measure µs concentrated on Hs(T2,R2) such that:

(i) The equation (E2) is µs-almost-surely globally well-posed in time.
(ii) µs is an invariant measure for (E2).

(iii) µs does not have any atom and satisfies Eµs [‖u‖2
Hs ] = C(s) ∈ (0, ∞).

(iv) µs charges large norm data; that is, for any R > 0,

µs(u ∈ Hs, ‖u‖Hs > R) > 0 .

Remark 1.3. The measure µs depends on s because it is constructed by compactness methods
based on invariant measures for (1.6), which contains a regularisation by an hyper-viscous term
(−∆)s−1, thus depending on s.

The measure constructed by Theorem 1.2 satisfies the following properties.

Theorem 1.4 (Properties of the measure). Let s > 2 and µs the measure obtained in Theo-
rem 1.2. There exists a continuous increasing function p : R+ → R+ such that p(0) = 0 and for
every Borel subset Γ ⊂ R+ there holds:

µs (u ∈ Hs, ‖u‖L2 ∈ Γ) 6 p(|Γ|) .

Remark 1.5 (Dimension 3). In dimension 3 we can prove a counterpart to Theorem 1.2: if
s > 7/2 then there exists an invariant measure µ to the 3d Euler equations, concentrated on
Hs(T3,R3). However, (iii) cannot be ensured. We briefly explain how the proof can be adapted
to dimension 3, why (iii) cannot be met, and provide an heuristics suggesting that in this case
one may have µ = δ0.

The 3d Euler equation is approximated bt the following hyper-viscous regularisations

(1.3) ∂tuν + νLuν + B(uν , uν) =
√

νη and ∇ · uν = 0 ,

where L = (−∆)1+δ for some δ > 0 and B(u, u) = P(u ·∇u) is the Leray projection of u ·∇u and
η some random noise. The proof of Theorem 1.2 can be reproduced, as it mostly relies on Propo-
sition 4.2 (i) and (ii), that is E[‖uν(t)‖2

H1+δ ] = B0
2 and E[‖uν(t)‖2

H2+δ ] = B1
2 , not depending on

ν, which is the key point to exclude δ0 from the possible limiting invariant measures. Obtaining
these two relations ultimately hinges on the two cancellations (B(u, u), u)L2 = (B(u, u), u)H1 = 0
which is specific to dimension 2. In dimension 3 we can only utilize (B(u, u), u)L2 = 0. Thus,
we do not exclude the possibility of µ = δ0 (other possible atoms can be excluded).

From a physicist point of view, the zeroth law of turbulence states that the solutions ũν

to (1.3) with δ = 0 and where
√

νη is replaced by η should satisfy E[‖ũν‖2
L2 ] . 1, a constant

only depending on the noise parameters. Hence, in our case we expect that E[‖uν‖2
L2 ] −→

ν→0
0 and

µ = δ0. We claim no proof of this fact, but this seems very likely.

1.2.2. Remarks on the growth of the Sobolev norms for solutions to (E2). This work was origi-
nally motivated by the growth of the Sobolev norms and the L∞ norm of the vorticity gradient
in dimension 2. Let us recall some known results. Up to the knowledge of the author, the
only known technique to establish such bounds is to estimate ‖K‖Lp→Lp , with K being defined
by (1.2). For example, in order to estimate ‖ξ‖Hs , one simply applies ∇s to (1.1) and obtain
bounds of the form:

d

dt
‖∇sξ(t)‖L2 . ‖K‖Lp→Lp‖∇sξ(t)‖1+ 2

p

L2 ,

which after optimisation in p leads to the following estimates.

Theorem 1.6 (Bound on the growth of Sobolev norms, [KS̆14], Section 2). Let u be a smooth,
global solution to (E2). There exists a constant C = C(u0) > 0 such that for any t > 0,

‖u(t)‖Hs , ‖∇ξ(t)‖L∞ 6 CeeCt

.
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The question is then to estimate how much these norm can really grow. Some specific ini-
tial data which produce infinite norm inflation in T

2 were exhibited by Bahouri and Chemin
in [BC94]. More recently, the work of Kiselev and S̆verák achieved the double exponential
growth on a disk. On the torus however, and up to the knowledge of the author, no such result
is known. Only initial data producing exponential growth are known. This is the content of the
result of Zlatos̆ in [Zla15]. We summarise these two results in the following theorem.

Theorem 1.7 (Examples of growth estimates, [KS̆14, Zla15]). Let U denote either the unit disc
D = {(x, y) ∈ R

2, x2 + y2 6 1} or the torus T
2. There exists an initial data u0 which lies in C∞

in the case of U = D and C1,α (for some α ∈ (0, 1)) if U = T
2 such that the unique associate

global solution to the Euler equation (E2) constructed in Theorem 1.1 satisfies:

(i) If U = D, then there exists C > 0 such that for all t > 0,

‖∇ξ(t)‖L∞ > C exp
(

CeCt
)

.

(ii) If U = T
2, then there exists t0 > 0 such that for t > t0 there holds:

sup
t′6t

‖∇ξ(t′)‖L∞ > et .

The next question is then to quantify how likely it is for an initial data to produce such
growth. Our result in this direction is the following.

Theorem 1.8 (Growth estimates). Let s > 2 and µs being the associate invariant measure
for (E2) constructed by Theorem 1.2 on Hs(T2,R2). Then we have the following estimates.

(i) For µs-almost every u0 ∈ Hs the associate unique global solution u ∈ C0(R+, Hs(T2,R2))
from Theorem 1.1 obeys the following growth estimate:

(1.4) ‖u(t)‖Hσ 6 C(u0)tα ,

for all t > 1, σ ∈ (1, s] and any α < σ−1
s+1−σ .

(ii) If s > 3 then we have the following corollary:

‖∇ξ(t)‖L∞ 6 C(u0)tα ,

for all t > 1, σ ∈ (1, s] and any α < σ−1
s+1−σ .

1.2.3. Main limitation of the results. Let µδ be a measure constructed by Theorem 1.2 in di-
mension 2. The main limitation of our result is the following: if u ∈ Hs \ {0} is a stationary
solution, then Theorem 1.4 implies that µδ({u}) = 0, but this does not prevent the measure µ
to be supported exclusively by stationary solutions.

If the measure µ does not concentrate on stationary solutions, then Theorem 1.4 produces
non-trivial slowly growing global solutions.

In the eventuality of µ concentrating on stationary solutions, this would exhibit a stability
property of the set of stationary solutions with respect to the approximation procedure and
shows that our compactness procedure does not extract measures with non-trivial dynamical
properties.

This question seems both fundamental and non-trivial. We highlight that this has been raised
in several works [BCZGH16, GHS̆V15] and also very recently in [FS20]. To the knowledge of the
author, there are no available works which are able to rule out the stationary solution supported
case. For example this is a limitation in [FS20].

Finally, let us mention that in finite dimension there exists a positive result obtained in [MP14],
where a finite dimensional Euler system is considered.
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1.3. Existing results pertaining to the construction of invariant measures for the

Euler equations. Theorems 1.2 asserts the existence of a measure µ, invariant under the
dynamics of (E2). We recall the main methods which produce invariant measures for partial
differential equations. To the knowledge of the author there exist at least three such techniques.

(i) The Gibbs-measure invariant technique, introduced by Bourgain in [Bou94, Bou96] and
many authors after him. This technique is adapted for Hamiltonian PDE’s. In the
context of the two-dimensional Euler equations some results have been obtained by
Albeverio-Cruzeiro [AC90] and Flandoli [Fla18].

(ii) Propagation of Gaussian initial data, initiated by Burq-Tzvetkov in [BT08, BT14] in the
context of wave equations. It consists of solving the equation with initial data taking
the form u0 =

∑

n∈Z gnunen(x) where (gn)n∈Z are identically distributed independent
Gaussian random variables.

(iii) The fluctuation-dissipation method of Kuksin. It consists in approximating the consid-
ered equation with a dissipation term and a fluctuating (random) term and in construct-
ing invariant measures for these approximations. Then the basic idea is to take the
vanishing viscosity limit, and retain some properties of the measures. Kuksin obtained
the following result:

Theorem 1.9 (Kuksin, [Kuk04, KS15]). There exists a topological space X ⊂ H2 and a measure
µ supported on X such that µ is invariant under the dynamics of (E2). Moreover the measure
µ is such that:

(i) There exists a continuous function p, increasing and such that p(0) = 0 satisfying the
following: for any Borelian A ⊂ R there holds,

µ(‖u‖L2 ∈ Γ) + µ(‖∇u‖L2 ∈ Γ) 6 p(|Γ|) .

(ii) For any A ⊂ H2 of finite Hausdorff dimension, µ(A) = 0.

Let us make a few comments. As we want to construct measures in higher regularity spaces,
the method (i) does not seem well adapted. Indeed, an invariant measure has been constructed in
the space H−1 by Flandoli in [Fla18], which is too low in regularity for our purposes. The method
(ii) seems to be difficult to apply in our situation. However this method has the advantage to
produce a measure whose support is dense in Sobolev spaces, and a very precise description of
the measures. Finally, the method (iii) appears to be more flexible than the others in the context
of fluid mechanics or even dispersive PDEs. We refer to [KS04] for applications of this method
to dispersive equations and the work of Sy [Sy19a, Sy18, Sy19b] and Sy-Yu [SY20a, SY20b].
The draw-back of the fluctuation-dissipation method is that since the invariant measures are
constructed by a compactness technique, the nature of the invariant measures is not as good as
the Gaussian measures of method (ii) or (i). Nevertheless, by a suitable analysis one can often
prove some good features of these measures. We refer to [KS15] for more details.

1.4. Structure of the proof of the main results. The proof essentially contains two main
ingredients: the construction of invariant measures for (E2) at regularity Hs following the origi-
nal argument of Kuksin in [Kuk04], and a globalisation argument of Bourgain in [Bou94]. This
combination of techniques has already appeared in the work of Sy, see [Sy19a] for example.

We start by explaining how a global invariant measure with good properties is used to globalise
the solutions controling their growth.

1.4.1. The globalisation argument. Let us recall an argument contained in [Bou94] which aims
at extending a local Cauchy theory to a global theory with additional bounds on the growth
of the Sobolev norms. Note that for our purposes, a deterministic local theory (even global in
dimension 2) is already known and we only need to estimate the growth of the solutions.
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Using a Borel-Cantelli argument, we reduce the almost-sure growth estimate of Theorem 1.8
to the following estimate: for any ε > 0 and any T > 0 there is a set Gε,T ⊂ Hs such that
µ(Gε,T ) > 1 − ε and for u ∈ Gε,T a solution u exists on [0, T ] such that there holds

‖u(t)‖Hs 6 CT α for any t 6 T .

In order to prove such a bound, the key ingredients are:

(i) the existence of a formal invariant measure µ for the considered equation, enjoying nice

decay estimates, for example subgaussian estimates of the form µ(‖u‖Hs > λ) 6 Ce−λ2

or weaker decay estimates; meaning that initial data are not likely to be of large norm.
As the measure is invariant this implies that at any time, the solution is not likely to be
of large norm.

(ii) a nice local well-posedness theory.

Picking 0 = t0 < · · · < tN = T , we can ensure that ‖u(tk)‖Hs is small for any k thanks to (i).
We control the growth of ‖u(t)‖Hs for t ∈ [tk, tk+1] thanks to the local well-posedness theory
(ii). We refer to Section 5 for details.

1.4.2. Producing an invariant measure. We explain the general strategy for producing invariant
measures for (E2) at regularity Hs, following [Kuk04]. In the following we write s = 2+ δ where
δ > 0. The case δ = 0 is precisely the content of [Kuk04]. We rewrite (E2) taking the Leray
projection (which we denote by P, see Section 2 for a definition). The Euler equation (E2) now
takes the form:

(1.5) ∂tu + B(u, u) = 0 ,

where B(u, u) := P(u · ∇u).
We introduce a random forcing η (see (2.1) for a precise definition) and a dissipative operator

L := Lδ := (−∆)1+δ. Then, the Euler equation (E2) is approximated by a randomly forced
hyper-viscous equation:

(1.6) ∂tuν + νLuν + B(uν , uν) =
√

νη and ∇ · uν = 0 ,

with initial condition uν(0) = u0 ∈ H2+δ(T2,R2).
With only slight modification of the argument the method in [KS15], Chapter 2 we will

construct invariant measures µν to (1.6) concentrated on H2+δ. Then we will prove compactness
of the family (µν)ν>0 in order to obtain an invariant measure µ for (E2).

1.4.3. Organisation of the paper. Section 2 recalls some basic results that will be used in Section 3
to construct global solutions to approximate equations. In Section 4, invariant measures are
constructed and in Section 5 and the proof of the main theorems are given. Section 6 is devoted
to the proof of Theorem 1.8. Some important results and computations are postponed to the
Appendix for convenience.

Acknowledgements. I want to warmly thank my advisors Nicolas Burq and Isabelle Gallagher
for encouraging me, suggesting the problem and subsequent discussions. I also thank Sergei
Kuksin for interesting discussions, suggesting [KS15] and many comments on a preliminary
version of this article. I also thank the anonymous referees for their remarks, greatly improving
this article.

2. Notation and preliminary results

2.1. Notation. We use the notation Z
2
0 = Z × Z \ {(0, 0)}.

We write A .c B when there is a constant C(c) depending on c such that A 6 C(c)B.
For a function F we write dF (u; v) the differential of F at u evaluated at v and d2(u; ·, ·) for

the second order differential of F at u.
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2.1.1. Fuctional spaces. Hs stands for the usual Sobolev spaces. In this article we use some
variants of theses spaces. We still denote the complete space

{

u ∈ Hs(T2,R2) , such that

∫

T2
u = 0

}

,

by Hs for convenience, and refer to it as the space of Hs functions with zero-mean. We endow
this space with the norms

‖u‖2
Ḣs =

∑

n∈Z2

|n|2s|û(n)|2 and ‖u‖2
Hs =

∑

n∈Z2

〈n〉2s|û(n)|2 .

Recall that these two norms are equivalent on the space of zero mean Hs functions:

‖ · ‖Ḣs 6 ‖ · ‖Hs 6 2‖ · ‖Ḣs .

Given a space X, the space Xdiv refers to the space of functions u ∈ X such that ∇ · u = 0,
endowed with the norm of X.

We introduce the Leray projector P : L2(T2,R2) → L2
div(T2,R2) defined as the Fourier multi-

plier with coefficients Mij(n) = δij − ninj

|n|2 , where n = (ni)16i62 ∈ Z
2. We define P6N to be the

projection on frequencies |n| 6 N . We recall that with this definition P6N is not continuous on
Lp when p 6= 2, but we will not use estimates in Lp.

We set B(u, v) := P(u · ∇v) defined for sufficiently smooth u, v. B is then extended to
L2

div
× L2

div
by duality by 〈B(u, v), ϕ〉 := −〈u ⊗ v : ∇ϕ〉 for such that ∇ϕ ∈ L∞.

Let (X, ‖·‖X ) be a normed space and I an interval. The Sobolev space W s,p(I, X) is endowed
with the norm

‖u‖p
W s,p(I,X)

:= ‖u‖p
Lp(I,X) +

∫∫

I×I

‖u(t) − u(t′)‖p
X

|t − t′|1+sp
dt dt′ .

We also sometime use Lp
T X as a shorthand for Lp((0, T ), X).

2.1.2. Probability theoretic notation. If E is topological space then P(E) stands for the set of
probability measures on E and B(E) stands for the set of its Borelians.

We consider a probability space (Ω, F ,P) and further assume F to be complete, that is F
contains all the sets contained in zero probability measure measurable sets. Let (Ft)t>0 be a
filtration of F , that is, t 7→ Ft is non-increasing. The quadruple (Ω, F , Ft,P) is called a filtered
probability space.

A process (x(t))t>0 is said to be progressively measurable with respect to a filtration (Ft)t>0

if for any T > 0, x|[0,T ] is B([0, T ]) ⊗ FT measurable.
The expectation with respect to the probability P will be denoted E and when the expectation

will be taken with respect to a measure µ we will write Eµ.

2.1.3. The noise. We let (Gt)t>0 be the completed filtration associated to identically distributed
independent Brownian motions (βn(t))n∈Z2 .

In this text we will use a Hilbert basis (en)n∈Z2
0

of the space of {u ∈ L2
div(T2,R2),

∫

T2 u = 0}
given by

en(x) :=
(−n2, n1)T

√
2π|n|

{
sin(n · x) if n1 > 0 or (n1 = 0 and n2 > 0)
cos(n · x) otherwise,

and for |n| =
√

n2
1 + n2

2 6= 0. Then for any n ∈ Z
2
0 we have (−∆)en = |n|2en.

We set η(t) = d
dtζ(t) where

(2.1) ζ(t) =
∑

n∈Z2
0

φnβn(t)en ,

for some numbers (φn)n∈Z2
0

to be chosen later and introduce Bk :=
∑

n∈Z2
0

|n|2k|φn|2.
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2.2. Deterministic preliminaries. In the following we gather some standard results that we
will use on many occasions. We start with some basic estimates of the bilinear form in dimension
d = 2 which can be found in [KS15] Lemma 2.1.6 and Proposition 2.1.7 for instance.

Lemma 2.1 (Properties of the bilinear form in dimension 2). Let u ∈ H1
div(T2,R2) and v, w ∈

H1(T2). Then we have the following.

(i) 〈B(u, v), v〉L2 = 0.
(ii) 〈B(u, u), u〉H1 = 0.

(iii) ‖B(u, v)‖H−1 . ‖u‖
H

1
2
‖v‖

H
1
2
.

Remark 2.2. The property (ii) will appear to be a crucial algebraic cancellation which will be
heavily used through the rest of the paper, and is very specific to the dimension 2.

We will also need a basic heat kernel estimate.

Lemma 2.3. Consider the operator L = (−∆)1+δ for δ > 0. Let s0 ∈ R, α > 0 and F ∈
Hs0(T2), with zero mean. For any s < s0 + α(1 + δ) and t > 0 there holds

(2.2)
∥
∥
∥e−tLF

∥
∥
∥

Hs
. t− α

2 ‖F‖Hs0 ,

where the implicit constant only depends on α.

Proof. We take the Fourier transform and use the mean zero condition to write
∥
∥
∥e−tLF

∥
∥
∥

2

Hs
=
∑

n∈Z2

〈n〉2se−2t|n|2(1+δ) |F̂ (n)|2

=
∑

n∈Z2
0

〈n〉2s e−2t|n|2(1+δ)
tα|n|2α(1+δ)

tα|n|2α(1+δ)
|F̂ (n)|2 .

Then observe that the function x 7→ xαe−x is bounded so that
∥
∥
∥e−tLF

∥
∥
∥

2

Hs
6 Ct−α

∑

n∈Z2
0

〈n〉2(s−s0)−2α(1+δ)〈n〉2s0|F̂ (n)|2 ,

which is bounded by t−α‖F‖2
Hs0 as soon as s < s0 + α(1 + δ). �

2.3. Probabilistic preliminaries. We will use the Itô isometry in the following form:

Theorem 2.4 (Itô isometry, [DPZ92]). Let F (t) be an Gt-adapted process. Then, for any t > 0
there holds

(2.3)

∥
∥
∥
∥

∫ t

0
F (t′) dβ(t′)

∥
∥
∥
∥

L2(Ω)
= ‖F‖L2((0,t) .

Moreover we will often use the following facts:

(i) When F is a deterministic function, then

∫ t

0
F (t′) dβn(t′) is a Gaussian random variable

of mean 0 and variance ‖F‖2
L2((0,t), see [DPZ92].

(ii) If Y is a Gaussian random variable on a Hilbert space H (that is, (Y, a)H is a real
Gaussian for any a ∈ H), then one has

(2.4) ‖Y ‖Lp
ω
.

√
p‖Y ‖L2

ω
,

for any p > 1.

We also use the following well-known regularity criterion.
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Lemma 2.5 (Kolmogorov,[DPZ92]). Let (X(t))t>0 be a stochastic process with values in a
Banach space endowed with a norm ‖ · ‖. Assume that there exist p > 1 and α > 0 such that

E[‖X(t) − X(s)‖p] . |t − s|1+α .

Then for any ε > 0 small enough, then (X(t))t>0 admits a modification (i.e., there is (X̃(t))t>0

such that for all t > 0, X̃(t) = X(t) almost surely) that is almost-surely (α
p − ε) Hölder contin-

uous.

3. Constructions of solutions to approximate equations

In this section, we study the well-posedness of the following hyper-viscous equation:

(HVE2
ν)

{
∂tuν + νLuν + B(uν , uν) =

√
νη

uν(0) = u0 ∈ H1
div(T2) ,

where we recall that L = (−∆)1+δ for some δ > 0. η = d
dtζ(t) where ζ(t) is defined by (2.1) and

satisfies B3+δ < ∞.
We let (Ω,P, F) be a probability space with the Brownian motion completed filtration (Gt)t>0.

Proposition 3.1 (Solutions to (HVE2
ν)). Let ν > 0 and u0 a G0-measurable random variable

such that u0 ∈ H1
div almost surely. We also assume that the noise η is such that B3+2δ < ∞.

Then there exists a set Ω1 such that P(Ω1) = 1 and such that for any ω ∈ Ω1:

(i) (HVE2
ν) has a unique global solution t 7→ uω

ν (t) associated to uω
0 , in the space C0(R+, H1

div).

(ii) Moreover uω
ν ∈ L2

loc(R+, H2+δ).
(iii) uν may be written in the form

uν(t) = u0 +

∫ t

0
f(s) ds +

√
νζ(t) ,

where equality holds in H−δ and where f(s) is a Gs-progressively measurable process
satisfying that almost surely f ∈ L2

loc(R+, H−δ). In particular u(t) is a Ft-progressively
measurable process.

(iv) There exists a measurable map U : H1 × C0(R+, H1) → C0(R+, H1), continuous in its
first variable, such that for any ω ∈ Ω1, uω

ν = U(u0, ζ).

Remark 3.2. The reader already aware of the methods used in [Kuk04] can skip the proof
provided in this section, as the proof follows the same lines.

A general strategy for solving a nonlinear stochastic partial differential equation is to seek for
solutions which have a particular structure, designed to eliminate the randomness and apply a
fixed-point argument.

We explain the general scheme for proving Proposition 3.1. In order to solve (HVE2
ν) we first

look for solutions zν to the following equation:

(3.1)

{
∂tzν(t) + νLzν(t) =

√
νη(t)

zν(0) = 0 .

Then we seek for solutions to (HVE2
ν) taking the form uν = zν + vν where vν formally satisfies:

(3.2)

{
∂tvν + νLvν + B(zν + vν , zν + vν) = 0

vν(0) = u0 ,

This is a deterministic equation and can be solved in the space C0(R+, H1
div).

A solution to (3.1) is explicitly given by

(3.3) zν(t) =
√

ν
∑

n∈Z2
0

φn

(∫ t

0
e−ν(t−t′)Ldβn(t′)

)

en ∈ H1
div(T2,R2) ,
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as this can be checked by the Itô formula for example, see Appendix A. Moreover, the process
zν satisfies the following properties.

Lemma 3.3. Under the assumptions of Proposition 3.1, there exists a set Ω1 such that P(Ω1) = 1
and which satisfies the following properties for any ω ∈ Ω1. Let us denote by z the solution zν

in (3.3). Then:

(i) z ∈ C0(R+, H1
div) ∩ L2

loc(R+, H2+δ).
(ii) There exists α > 0 such that z almost surely belongs to the space Cα

loc(R+, W 2,4).

(iii) E[‖z(t)‖2
Ḣ1 ] 6 B1

2 νt, for any t > 0.

This lemma can be proven using the techniques in [KS15], Chapter 2; Section 4, as well as
the following lemma, allowing to solve (3.2) globally.

Lemma 3.4. Let u0 a random variable such that u0 ∈ H1
div almost surely. Then there exists a

set Ω2 of probability 1 such that for any ω ∈ Ω2, the associate Cauchy problem to (3.2) is globally
well-posed in C(R+, H1

div(T2)). Furthermore:

(i) For any T > 0, the flow map H1 → C0([0, T ], H1
div) defined by u0 7→ vν is locally

Lipschitz.
(ii) vν ∈ L2

loc(R+, H2+δ).

Proof of Proposition 3.1. Part (i) follows from Lemma 3.3 and Lemma 3.4 and part (ii) follows
from Lemma 3.4.

We prove (iv). In fact, Lemma 3.4 proves that vν is a continuous function of zν and u0 as a
corollary of the local well-posedness theory, furthermore, there exists a measurable function Z :
C0(R+, H1) → C0(R+, H1) such that zν = Z(ζ), where Z(ζ) is given by (3.3). The measurability
comes from the fact that the maps ZM defined by

ZM (ζ)(t) =
√

ν
∑

|n|6M

φn

(∫ t

0
e−ν(t−t′)L dβn(t′)

)

en ,

are continuous, hence measurable; and that Z = lim
M→∞

ZM almost surely. For details, see [KS15],

Remark 2.4.3.
In order to prove (iii) we write uν(t) = u0 +

∫ t
0 f(s) ds +

√
νζ(t) where f(s) = −νLuν(s) +

B(uν(s), uν(s)) and ζ(t) :=
∑

n∈Z2

φnβn(t)en. Then f(s) is Gs progressively measurable. Indeed,

we know that s 7→ zν(s) is progressively measurable by construction and properties of the
stochastic integral, and we also know that s 7→ vν(s) is progressively measurable thanks to (iv).
Finally we explain why f ∈ L2

locH
−δ. First, since uν lies in L2

locH
2+δ thanks to Lemma 3.4 we

obtain Luν ∈ L2
locH

−δ. For the bilinear term we use Lemma 2.1 to bound

‖B(uν , uν)‖H−δ 6 ‖B(uν , uν)‖L2 6 ‖uν‖2
H1 .

Since uν ∈ C0(R, H1
div), it follows that B(uν , uν) ∈ L2

loc(R+, H−δ) and thus the result. �

4. Construction of invariant measures

We study the invariance properties of the solutions constructed in Section 3 by Proposition 3.1.
In order to do so, we remark that the processes constructed by Proposition 3.1 enjoy a Markovian
structure. We explain how: enlarge the probability set defining Ω̃ := H1

div ×Ω endowed with the

σ-algebra B(H1) ⊗ F and the filtration F̃t := B(H1) ⊗ Gt and denote ω̃ = (v, ω) for elements in
Ω̃. We let ũω̃(t) := uω

ν (t, v), standing for the solution constructed by Proposition 3.1 with initial
data u0 = v ∈ H1. Let Pv := δv ⊗ P. Then (uν(t),Pv) forms a Markovian system, as it satisfies
the Markov property:

Pv(uν(t + s) ∈ Γ|Fs) = Puν(s)(uν(t) ∈ Γ) ,
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which comes from Proposition 3.1, (iv). Let us remark that if Ut denotes the restriction of
the map U of Proposition 3.1, then L(uν(t)) = (Ut)∗(δv ⊗ mζ,T ), where mζ,T = L(ζ|[0,T ]). In
particular we have L(u0) = (U0)∗L(uν).

4.1. Existence of an invariant measure. In order to construct an invariant measure for (HVE2
ν)

we follow the strategy in [KS15] which consists in applying the Krylov-Bogolioubov argument.
Let us introduce some more notation, let us denote Pt(u, Γ) := Pv(u(t) ∈ Γ), and define the

semi-group Bt : L∞ → L∞ defined, for any f ∈ L∞ by Bt(f) = z 7→
∫

H1 f(z)Pt(v, dz). We
define the dual B∗

t : P(H1) → P(H1) by B
∗
t (µ) := Γ 7→ ∫

H1 Pt(v, Γ)µ(dv), and observe that
L(u(t)) = B

∗
t (L(u0)).

We start with some higher Sobolev estimates for processes such that L(u0) = δ0.

Lemma 4.1. Assume that L(u0) = δ0 and let uν being the corresponding process produced by
Proposition 3.1. Then there exists a constant C > 0 independent of ν such that for any t > 0,

E

[∫ t

0
‖uν(t′)‖2

Ḣ2+δ dt′
]

6 Ct .

Proof. We apply the Itô formula (see Proposition A.2 and the subsequent discussion) to the
functional F (u) := ‖u‖2

Ḣ1 and we find that for all t ∈ R,

E

[

‖uν(t)‖2
Ḣ1

]

− E

[

‖u0‖2
Ḣ1

]

+ 2νE

[∫ t

0
‖uν(t′)‖2

Ḣ2+δ dt′
]

= νB1t .

Then the result follows from E[‖u0‖2
Ḣ1 ] = 0, since L(u0) = δ0. �

We can now state the main results of the section.

Proposition 4.2. The Markov system (uν(t),Pv)v∈H1 admits a stationary measure. Moreover,
for any stationary measure µν ∈ P(H1), the following properties hold.

(i) Eµν

[

‖u‖2
Ḣ1+δ

]

= B0
2 .

(ii) Eµν

[

‖u‖2
Ḣ2+δ

]

= B1
2 .

(iii) There exists γ > 0, and C < ∞, only depending on the noise parameters (φn)n∈Z2
0

such

that one has Eµν

[

e
γ‖u‖2

Ḣ1

]

6 C.

Remark 4.3. We recall that the measures µν also depend on δ, as they depend on the regularising
operator L = Lδ.

Proof. Let us denote by u the solution starting at u0 with law L(u0) = δ0, and let λt := B
∗
t δ0.

We introduce λ̄t := 1
t

∫ t

0
λt′ dt′. In order to apply the Krylov-Bogolioubov theorem we need to

show that the family (λ̄t)t>0 is tight in H1. Since the embedding H2+δ →֒ H1 is compact it is
sufficient to prove that

sup
t>0

λ̄t

(

H1 \ BH2+δ(0, R)
)

−→
R→∞

0 .

Observe that thanks to Lemma 4.1, we have

λ̄t

(

H1 \ BH2+δ(0, R)
)

6
1

t

∫ t

0
P(‖uν(t′)‖H2+δ > R) dt′

6
1

tR2

∫ t

0
E

[

‖uν(t′)‖2
H2+δ

]

6
C

R2
,
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which goes to zero uniformly in t > 0. Then the Krylov-Bogolioubov theorem (see [Dud02])
ensures the existence of stationary measures. Let µν be such a stationary measure and let us
prove the required estimates.

(i) and (ii) are proven using the same argument. Let us only prove (ii). The Itô formula just
as in the proof of Lemma 4.1: we take uν(t) a process solving (HVE2

ν) with stationary measure
µν . We can write, for any t > 0, thanks that the Itô formula:

E

[

‖uν(t)‖2
Ḣ1

]

− E

[

‖u0‖2
Ḣ1

]

+ 2νE

[∫ t

0
‖uν(t′)‖2

Ḣ2+δ dt′
]

= νB1t ,

for any t > 0. Using invariance, we obtain
∫ t

0

(

2E
[

‖uν(t)‖2
Ḣ2+δ

]

− B1

)

= 0

for all t > 0 so that E

[

‖uν(t)‖2
Ḣ2+δ

]

= B1
2 , for almost any t > 0. However by invariance again

(and since u 7→ ‖u‖2
H2+δ is a Borelian function of H1), we know that the quantity E[‖uν(t)‖2

Ḣ2+δ ]
is time-invariant, thus finite for all t, thus identically equal to B1.

The same argument applied to ‖uν(t)‖2
L2 instead of ‖uν(t)‖2

Ḣ1 applies in order to prove (i),

as the main observation being the cancellation (B(u, u), u)L2 = 0.
(iii) also comes from the Itô formula and we refer to Appendix A for more details of the

computations. The Itô formula applied to the functional defined by G(u) = e
γ‖u‖2

Ḣ1 yields that
for any γ > 0 and any t > 0:

E

[

e
γ‖uν(t)‖2

Ḣ1

]

= E

[

e
γ‖u0‖2

Ḣ1

]

+ 2γνE





∫ t

0
e

γ‖uν(t′)‖2
Ḣ1




B1

2
− ‖uν(t′)‖2

Ḣ2+δ + γ
∑

n∈Z2

|n|2|φn|2|un(t′)|2


 dt′



 ,

where un(t) = (uν(t), en)L2 .
Since max{|φ2

n|, n ∈ Z
2} < ∞, choosing γ such that γ sup |φn|2 ≃ 1

2 leads to the inequality

E

[

e
γ‖uν(t)‖2

Ḣ1

]

− E

[

e
γ‖u0‖2

Ḣ1

]

6 CνE

[∫ t

0
A(t′) dt′

]

,

where A(t′) := e
γ‖uν(t′)‖2

Ḣ1

(

C − ‖uν(t′)‖2
Ḣ2+δ

)

and C > 0 does not depend on ν.

Remark that if ‖uν(t)‖2
Ḣ2+δ > 2C then

e
γ‖uν(t′)‖2

Ḣ1

(

2C − ‖uν(t′)‖2
Ḣ2+δ

)

6 0 ,

and if ‖uν(t)‖2
Ḣ2+δ 6 2C then

e
γ‖uν(t′)‖2

Ḣ1

(

2C − ‖uν(t′)‖2
Ḣ2+δ

)

6 2Ce2γC ,

so that in any case

e
γ‖uν(t′)‖2

Ḣ1

(

2C − ‖uν(t′)‖2
Ḣ2+δ

)

6 2Ce2γC
︸ ︷︷ ︸

C1

,

which implies A(t′) 6 C1 − Ce
γ‖uν(t′)‖2

Ḣ1 and therefore introducing Y (t) := E

[

e
γ‖uν(t)‖2

Ḣ1

]

, we

have obtained

Y (t) + Cν

∫ t

0
Y (t′) dt′ 6 Y (0) + C1νt ,

where C and C1 do not depend on ν and the Grönwall lemma gives

(4.1) Y (t) 6 e−CνtY (0) + C2 ,
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where C2 is a function of C and C1, and provided Y (0) < ∞. Then recalling that invariance
implies Y (t) = Y (0) and letting t → ∞ this yields Y (0) 6 C2, a finite constant independent of
ν.

Let us prove that Y (0) is a finite quantity. To this end we set approximations

YN (t) := E [fN(uν(t))] where fN (v) := exp
(

γ min{‖v‖2
Ḣ1 , N2}

)

.

Then we write:

YN (t) = E

[

fN (uν(t))1‖u0‖
Ḣ1>R

]

+ E

[

fN (uν(t))1‖u0‖
Ḣ16R

]

,

for R > N . The first term is bounded by eγN2
µν(‖u‖Ḣ1 > R) and the second one using the

previous estimates. Using the Markov inequality, part (i) of the proposition and (4.1) gives

YN (0) = YN (t) 6 eγN2
µν(‖u‖Ḣ1 > R) + Eµν

[

e
γ‖u‖2

Ḣ1 |‖u‖Ḣ1 6 R
]

6 eγN2
µν(‖u‖Ḣ2+δ > R + Eµν

[

e
γ‖u‖2

Ḣ1 |‖u‖Ḣ1 6 R
]

. C(ν)eγN2
R−2 + e−Cνt+R2

+ C2 .

First take the limit t → ∞, then R → ∞ to get YN (0) 6 C2, which is uniform in N . By the
monotone convergence theorem we deduce that Y (0) < ∞. �

4.2. Tightness and limit. Once and for all we fix some stationary measures µν . Our next
task is to pass to the limit ν → 0. In order to do so, we need to prove several compactness
estimates. We denote by µ̄ν the law of uν(·). We will use compactness arguments based on the
Aubin-Lions-Simon creterion, which we recall, and refer to Corollary 9 in [Sim87] for a proof of
(ii).

Theorem 4.4 (Aubin-Lions-Simon compactness theorem). Let I be a compact interval. Let
B0, B, B1 be three separable complete spaces. Assume that B0 →֒ B →֒ B1 continuously, the
embedding B0 →֒ B being compact.

(i) Let W := {u ∈ Lp(I, B0) and ∂tu ∈ Lq(I, B1)}. Then for p < ∞, W is compactly
embedded into Lp(I, B). If p = ∞ and q > 1 then W is compactly embedded into
C0(I, B).

(ii) Let s0, s1 ∈ R and 1 6 r0, r1 6 ∞. Let W := W s0,r0(I, B0) ∩ W s1,r1(I, B1). Assume that
there exists θ ∈ (0, 1) such that for all v ∈ B0 ∩ B1 one has

‖v‖B . ‖v‖1−θ
B0

‖v‖θ
B1

.

Let

sθ := (1 − θ)s0 + θs1 and
1

rθ
=

1 − θ

r0
+

θ

r1
,

then if sθ > 1
rθ

, W is compactly embedded into C0(I, B).

Proposition 4.2 already asserts that µ̄ν(L2
loc(R+, H2+δ) ∩ C0(R+, H1)) = 1.

We will prove compactness estimates on µ̄ν rather than simply on µν , because not only do
we want to make the measures µν converge to some measure µ, but we want the processes uν

to converge to a process u solving the Euler equations.
We want to prove that the family of measures (µ̄ν)ν>0 is tight in

Y := C0(R+, H1−ε) ∩ L2
loc(R+, H2+δ−ε) ,

for a fixed ε > 0 that we may take arbitrarily small. It is sufficient to prove the tightness on
every time interval In = [0, n], namely that for all n > 1, (µ̄ν)ν>0 is tight in

Yn := C0(In, H1−ε) ∩ L2
loc(In, H2+δ−ε) .
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Since the time interval does not play any specific role, we will prove tightness in

Y1 := C0(I, H1−ε) ∩ L2
loc(I, H2+δ−ε) ,

where I = [0, 1].
In order to do so, we introduce the space

X := L2(I, H2+δ) ∩
(

H1(I, H−δ) + W
3
8

,4(I, H1−2ε)
)

= L2(I, H2+δ) ∩ H1(I, H−δ)
︸ ︷︷ ︸

X1

+ L2(I, H2+δ) ∩ W
3
8

,4(I, H1−2ε)
︸ ︷︷ ︸

X2

.

We will prove that following lemmata.

Lemma 4.5. Both spaces X1 and X2 are compactly embedded into Y1.

Lemma 4.6. The sequence (uν)ν>0 is bounded in L2(Ω, X).

These results then imply that the family (µ̄ν)ν>0 is tight in Y .

Proof of Lemma 4.5. Since H2+δ−ε →֒ H2+δ compactly, we have compact embeddings X1 →֒
L2(I, H2+δ) and X2 →֒ L2(I, H2+δ) thanks to Theorem 4.4, (i).

The compactness of the embedding X1 →֒ C0(I, H1−ε) follows from Theorem 4.4, (ii). Indeed,
take s0 = 0, s1 = 1, r0 = r1 = 2 and observe that 1 − ε = (1 − θ)(2 + δ − ε) + θ(−δ) with θ > 1

2 ,

so that sθ > 1
rθ

.

The embedding X2 →֒ C0(I, H1−ε) is compact thanks to Theorem 4.4, (ii). This time take
s0 = 0, s1 = 3

8 , r0 = 2 and r1 = 4. We can compute that sθ − 1
rθ

= 5θ
8 > 0, since θ = 1+δ−ε

1+δ+ε is

arbitrarily close to 1. �

Proof of Lemma 4.6. We recall that ‖u‖X = inf{‖u1‖X1 +‖u2‖X2} where the infimum runs over
decompositions u = u1 + u2 with u1 ∈ X1, and u2 ∈ X2. We write

uν(t) = uν(0) +

∫ t

0
B(uν(t′), uν(t′)) dt′ − ν

∫ t

0
Luν(t′) dt′ +

√
νζ(t) .

Then we set u
(1)
ν := uν(0) +

∫ t

0
B(uν(t′), uν(t′)) dt′ − ν

∫ t

0
Luν(t′) dt′ and u

(2)
ν (t) =

√
νζ(t).

The bounds in L2(Ω, L2([0, 1], H2+δ)) follow from Proposition 4.2, (ii). For the other bounds
we proceed as follows.

We observe that ∂tu
(1)
ν (t) = B(uν(t), uν(t)) + Luν(t) thus uν is bounded in L2(Ω, L2(I, H−δ))

thanks to Proposition 4.2, (ii).

It remains to prove that u
(2)
ν is bounded un L2(Ω, W

3
8

,4([0, 1], H1−2ε)), which in facts will

result from proving that ζ ∈ L2(Ω, W
3
8

,4([0, 1], H1−2ε). We compute:

E[‖ζ(t)‖4
H1−2ε ] = E











∑

n∈Z2
0

〈n〉2(1−2ε)|φn|2βn(t)2






2


 6

∑

n∈Z2
0

〈n〉4|φn|4E[βn(t)4] .

Now recall that by the properties of Gaussian variables, E[βn(t)4] = 3t2 6 3 on the time-
inverval I so that finally E[‖ζ‖4

L4(I,H1)] < ∞, since φ is a standard noise. By the same techniques

we obtain

E

[
∫

[0,1]×[0,1]

‖ζ(t) − ζ(r)‖4
H1

|t − r|1+4α
dr dt

]

< ∞ ,

and combined with the previous estimate we finally have E

[

‖u
(2)
ν ‖2

W
3
8

,4

]

. ν. �
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4.3. Passing to the limit. Thanks to the previous subsection, we can assume that the sequence
µ̄ν converges as ν → 0. Indeed, by the Prokhorov theorem (see Theorem 11.5.4 in [Dud02]),

there exists a sequence νj → 0 and µ̄ ∈ P
(

C0(R, H1−ε) ∩ L2+δ−ε
)

such that µ̄νj
→ µ̄ in law.

This means that Eµ̄νj
[f ] → Eµ̄[f ] for any bounded Lipschitz function.

Note that the measures (µνj
)j>0 also satisfy Prokhorov’s theorem in H2+δ−ε, due to the

uniform estimates in H2+δ, hence there is no loss of generality in assuming that µνj
→ µ weakly

in P(H2+δ), where µ denotes the restriction at time t = 0 of µ̄.
By the Skorokhod theorem (see [Dud02], Theorem 11.7.2) there exists a sequence of µ̄ν-

stationary processes ũν and an Y -valued process u defined on the same probability space such
that { L(ũνj

) = µνj
and L(u) = µ

P

(

ũνj
→ u in Y as j → ∞

)

= 1 ,

where Y = C0(R, H1−ε) ∩ L2+δ−ε.
We can further assume that the ũνj

satisfy the same equation as uνj
. More precisely, the

uνj
satisfy an equation of the general form F (uνj

) =
√

νζ, where F is a deterministic measur-
able functional and ζ is the random variable defined by (2.1). Since L(uνj

) = L(ũνj
), then

L(F (ũνj
)) = L(F (uνj

)) = L(
√

nuζ) thus there exists a process ζ̃ equal in law to ζ̃ (and in

particular share the same numbers φn, that is there exists independent brownian motions β̃n

such that ζ̃(t) =
∑

n∈Z2
0

φnβ̃n(t)en) such that F (ũνj
) =

√
νζ̃. In the rest of this section we will

drop the˜and write uνj
, ζ.

We are ready to state the main results of this section.

Proposition 4.7. Let µ̄, µ and u as defined above. Then we have,

(i) µ̄(L2
loc(R+, H2+δ)) = 1 and µ(H2+δ) = 1.

(ii) Eµ

[

‖u‖2
Ḣ2+δ

]

6
B1

2
and Eµ

[

e
γ‖u‖2

Ḣ1

]

< ∞.

(iii) The process u is stationary for the measure µ and satisfies the Euler equation (E2).

(iv) The constant C defined by Eµ

[

‖u‖2
Ḣ1

]

= C satisfies:

(4.2) Cδ :=
1

2




B0

B
δ

1+δ

1





1+δ

6 C 6
B0

2
.

As a consequence Eµ

[

‖u‖2
Ḣ2+δ

]

∈ [Cδ , B1
2 ].

Remark 4.8. The measure µ also depend on δ, as it is obtained as a limit measures from µν = µ
(δ)
ν .

Proof. (i) Let T > 0. Thanks to Proposition 4.2 we have Eµν [‖u‖2
L2([0,T ],H2+δ)] 6 C indepen-

dently of ν. Note that we also have, uniformly in ν, M and K:

Eµνj

[

min
{

‖P6M u‖2
L2([0,T ],H2+δ), K

}]

6 C .

Since the map map u 7→ min
{

‖P6M u‖2
H2+δ , K

}

is continuous and bounded as a map H2+δ−ε →
R we can pass to the limit j → ∞ by weak convergence of the measures and get

Eµ

[

min
{

‖P6M u‖2
L2([0,T ],H2+δ), K

}]

6 C ,

and conclude by monotone convergence as K → ∞ and then M → ∞.
(ii) follows by a similar argument.
(iv) First, we claim that for any j the following uniform inequalities hold:

(4.3) Cδ 6 Eµνj

[

‖u‖2
Ḣ1

]

6
B0

2
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In order to prove (4.3), we observe that the right-hand side inequality is contained in Proposi-
tion 4.2 (i). For the lower bound, we start by using the interpolation inequality

‖u‖2
Ḣ1+δ 6 ‖u‖

2
1+δ

Ḣ1 ‖u‖
2δ

1+δ

Ḣ2+δ
,

and by the Hölder inequality we infer

Eµνj
[‖u‖2

Ḣ1+δ ] 6 Eµνj

[

‖u‖2
Ḣ1

] 1
1+δ

Eµνj

[

‖u‖2
Ḣ2+δ

] δ
1+δ .

The proof of the claim now follows from Proposition 4.2 (i) and (ii).
We claim that there exists a constant C > 0 such that

(4.4) lim sup
j>0

∫

‖u‖
Ḣ1 >R

‖u‖2
Ḣ1 µνj

(du) 6
C

R
.

Assuming this claim we can finish the proof of (iv). To this end, let χ be a smooth bump
function, such that χ = 1 on [−1, 1], vanishing outside [−2, 2] and let χR = χ(·/R). Let ε > 0
and R > 0 be fixed. Then by (4.4) there exists J = J(R) > 0 large enough such that for any
j > J there holds

∫

‖u‖
Ḣ16R

‖u‖2
Ḣ1 µνj

(du) > Cδ − ε .

Now observe that χ R
2

(‖u‖Ḣ1) 6 1‖u‖
Ḣ1 >R hence

∫

χ R
2

(‖u‖Ḣ1)‖u‖2
Ḣ1 µνj

(du) > Cδ − ε .

Then passing to the limit j → ∞, and because u 7→ χ R
2

(‖u‖Ḣ1 )‖u‖2
Ḣ1 is a continuous bounded

map Ḣ1 → R, we obtain
∫

‖u‖
Ḣ16R

‖u‖2
Ḣ1 µ(du) > Cδ − ε ,

and finally the monotone convergence theorem in the limit R → ∞ proves (4.2).
It remains to establish (4.4). In order to do so, we remark that the Cauchy-Schwarz inequality

followed by the Markov inequality yields:

∫

‖u‖
Ḣ1 >R

‖u‖2
Ḣ1 µνj

(du) 6 µνj
(‖u‖Ḣ1 > R)

1
2

(
∫

‖u‖
Ḣ1 >R

‖u‖4
Ḣ1 µνj

(du)

) 1
2

6
1

R
Eµνj

[

‖u‖2
Ḣ1

] 1
2
Eµνj

[

‖u‖4
Ḣ1

] 1
2 .

Now remark that there is a constant C = C(γ) > 0 such that for any real numbers x there holds

x4 6 Ceγx2
so that we obtain

∫

‖u‖
Ḣ1>R

‖u‖2
Ḣ1 µνj

(du) 6
C

R
Eµνj

[

‖u‖2
Ḣ1

] 1
2
Eµνj

[

e
γ‖u‖2

Ḣ1

] 1
2

6
C

R
,

where in the last line we used the uniform estimates of Proposition 4.2 (iii). This estab-
lishes (4.4).

(iii) Invariance follows from the weak convergence of the measures. It remains to prove that u
satisfies the Euler equation on any time-interval [0, T ]. We start by writing that

(4.5) uν(t) = e−νtLu0 +

∫ t

0
e−ν(t−t′)L (B(uν(t′), uν(t′)) +

√
νζ(t′)

)

dt′ .
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As we want to pass to the limit in L2, we use the previous uniform bounds. First, we have
e−tνLu0 → u0 in L∞((0, T ), L2) and also uν → u in L∞((0, T ), L2). Next, we use the triangle
inequality to bound:

√
ν

∥
∥
∥
∥

∫ t

0
e−ν(t−t′)Lζ(t′) dt′

∥
∥
∥
∥

L2
6

√
ν

∫ t

0
‖ζ(t′)‖L2 dt′ ,

We have seen in the previous subsection that E[‖ζ‖L4((0,T ),H1−2ε ] < ∞, which implies in particu-

lar that
√

νζ → 0 in probability, in the space L4((0, T ), L2), thus up to passing to a sub-sequence
this yields

P

(

lim
j→∞

√
νjζ = 0 in L4((0, T ), L2)

)

= 1 ,

and then for t ∈ [0, T ]:

√
νj

∥
∥
∥
∥

∫ t

0
e−νj(t−t′)Lζ(t′) dt′

∥
∥
∥
∥

L2
6 T 3/4‖√

νjζ‖L4((0,T ),L2) −→
j→∞

0 .

To bound the remaining term, we use Lemma 2.3 and write:

∥
∥
∥

∫ t

0
e−ν(t−t′)L (B(uν(t′), uν(t′))− B(u(t′), u(t′))

)
dt′
∥
∥
∥

L2

.

∫ T

0

1√
t′

‖B(uν(t′), uν(t′)) − B(u(t′), u(t′))‖H−1 dt′

. ‖B(uν , uν) − B(u, u)‖L∞((0,T ),H−1)

. ‖uν − u‖
L∞((0,T ),H

1
2 )

‖uν‖
L∞((0,T ),H

1
2 )

.

Since (uνj
)j>0 is convergent to u (and therefore bounded) in L∞((0, T ), H1−ε)we obtain that for

any t ∈ [0, T ]:
∥
∥
∥
∥

∫ t

0
e−νj(t−t′)L

(

B(uνj
(t′), uνj

(t′)) − B(u(t′), u(t′))
)

dt′

∥
∥
∥
∥

L2
−→
j→∞

0 .

Finally, the process u almost surely satisfies u ∈ C0(R+, H1
div) ∩ L2

loc(R+, H2+δ) and obeys:

u(t) = u0 +

∫ t

0
P
(

u(t′) · ∇u(t′)
)

dt′ ,

where the equality holds in C0(R+, L2), hence u is a solution to the Euler equation (E2). �

5. Proof of the main results

5.1. About the classical local well-posedness theory for the Euler equations. We will
use that the local well-posedness time only depends on the size of the initial data. The following
result is well-known:

Lemma 5.1. Let s > 2. Then the Euler equation (E2) is globally well-posed in C0(R+, Hs(T2)).
Moreover, there exists c > 0 such that if u0 ∈ Hs(T2) and τ := c

‖u0‖Hs
, then there holds

‖u(t)‖Hs 6 2‖u0‖Hs ,

for any t ∈ [0, τ ].

Proof. The local well-posedness statement follows from standard approximation arguments based
on the following a priori estimate:

d

dt
‖u(t)‖2

Hs . ‖∇u(t)‖L∞‖u(t)‖2
Hs . ‖u(t)‖3

Hs ,
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where we used the Sobolev embedding Hs−1 →֒ L∞. Integrating this inequality, there exists
C > 0 such that

‖u(t)‖Hs 6
‖u0‖Hs

1 − Ct‖u0‖Hs

,

as long as 1 − Ct‖u0‖Hs > 0. Setting τ := 1
2C‖u0‖Hs

yields the result.

Finally the global well-posedness can be obtained using the blow-up criterion of Beale-Kato-
Majda, which states that if we denote T ∗ the maximal existence time, then:

(5.1) T ∗ < ∞ =⇒
∫ T ∗

0
‖ξ(t)‖L∞ dt = ∞ .

For a proof, see [BKM84]. Since the vorticity satisfies (1.1), we see that ξ is transported by the
flow, thus its L∞ norm is conserved, so that if we assume that T ∗ < ∞, then

∫ T ∗

0
‖ξ(t)‖L∞ dt = T ∗‖ξ0‖L∞ < ∞

which is a contradiction, thus T ∗ = ∞. �

First we remark that thanks to the global well-posedness result for two-dimensional Euler
equations we have the following result.

Proposition 5.2. The measure µ is invariant under the well-defined flow Φt : H2+δ → H2+δ

of (E2). More precisely, for any A ∈ B(H2+δ) and every t > 0 there holds:

µ(Φ−t(A)) = µ(A) .

Proof. This result will follow from the stationarity of the process u with respect to µ once we
prove that µ almost-surely, u(t) = Φt(u0). It is a weak-strong uniqueness statement. Let u0 ∈
H1. As we have already seen it, µ-almost surely, u0 ∈ H2+δ, so that there is no loss of generality
assuming that u0 ∈ H2+δ. Then, let v = Φt(u0) the global solution to (E2) associated to u0 which
is constructed by Lemma 5.1. Let us denote by u the solution constructed by Proposition 4.2,
associated to the initial data u0 and solution to (E2) in the class C0H1−ε ∩ L2

locH
2+δ−ε. Let

T > 0. We want to prove that u = v on [0, T ]. We introduce w := u − v, and then we compute

d

dt
‖w(t)‖2

L2 = −2(w · ∇u, w)L2 6 2‖w‖2
L2 ‖u‖H2+δ−ε ,

where we used the properties of the bilinear form and the Sobolev embedding. Since we have u ∈
L2([0, T ], H2+δ−ε) ⊂ L1([0, T ], H2+δ−ε), and w(0) = 0, the Grönwall lemma implies that w = 0
on [0, T ], hence the conclusion. �

Before the proof of Theorem 1.8, let us remark that from the bounds on ‖u‖Ḣ1 and ‖u‖Ḣ2+δ

we can infer the following interpolation inequality.

Lemma 5.3. Let σ ∈ (1, 2 + δ), then:

P (‖u‖Hσ > λ) . λ−
2(1+δ)

σ−1 logβ(s)(λ) ,

with β(σ) = 2+δ−σ
1+δ and where the implicit constant depends only on the constants C1, C2 and σ.

We postpone the proof of this technical estimate to the end of the section and proceed to the
proof of the main theorems. First, note that Theorem 1.2 (i), (ii) in the two-dimensional case is
already proven since we have constructed an invariant measure µ in Section 4 and its properties
will be studied in Section 6. It remains to prove Theorem 1.8 and Theorem 1.2 (iii).

Proof of Theorem 1.8 (i). Given that µ is an invariant measure for (E2), we are going to prove
the theorem using the same argument as in [Bou94], explained in the introduction. Let σ < s
where s = 2 + δ. Let τ ∼ c

λ denote the local well-posedness time given by the local Cauchy
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theorem for (E2), which says that if ‖u0‖Hσ 6 λ, then there is a unique local solution u(t) to (E2)
in C0([0, τ ], Hσ) on [0, τ ] obeying ‖u(t)‖Hσ 6 2λ for any t ∈ [0, τ ].

Let T > 0. Thanks to the local theory we now that if the initial data u0 is such that
‖u(nτ)‖Hσ 6 λ for any n = 0, . . . , ⌊T

τ ⌋ then we can solve on the time intervals [nτ, (n + 1)τ ]
and extend the local solution up until time T , with the bound ‖u(t)‖Hσ 6 2λ for any t ∈ [0, T ].
Thanks to this observation we let

Gλ,T :=

⌊ T
τ ⌋
⋂

n=0

{u0 ∈ Hσ , Φnτ (u0) ∈ Bλ} ,

where Bλ = BHσ (0, λ). Thus for any u0 ∈ Gλ,T there exists a solution on [0, T ] to (E2) with
initial data ‖u0‖Hσ 6 λ and moreover ‖u(t)‖Hσ 6 2λ for t ∈ [0, T ]. Then we compute, using
the invariance of the measure on Hs:

µ (Hσ \ Gλ,T ) 6

⌊T
τ ⌋
∑

n=0

µ (Φnτ (Hσ \ Bλ))

6

⌊T
τ ⌋
∑

n=0

µ (Hσ \ Bλ)

. T τ−1µ (Hσ \ Bλ) .

Recall that τ−1 ∼ λ, and incorporate Lemma 5.3:

µ (Hσ \ Bλ) 6 λ
σ−3−2δ

σ−1 logβ(σ) ,

so that µ(Hσ\Gλ,T ) . T λ
σ−3−2δ

σ−1 logβ(σ) and then we have µ(Hσ\Gλ,T ) 6 ε if λ ∼ (T ε−1)
σ−1

3−σ+2δ
+ε

for arbitrarily small ε > 0.
Finally, we provide the Borel-Cantelli argument, set Tn := 2n and εn := 1

n2 then consider

G :=
⋃

n>1

⋂

k>n

Gεk,Tk
.

Then we see that µ(G) = 1 and for any u0 ∈ G there is a n0 such that we have u0 ∈ Gn0 , which
gives

‖u(t)‖Hσ . (Tnε−1
n )

σ−1
3−σ+2δ

+ε . T
σ−1

3−σ+2δ
+ε

n log
2(σ−1)

3−σ+2δ
+2ε Tn ,

which concludes the proof. �

Proof of Theorem 1.8 (ii). It is a direct consequence of (i) and the use of the Sobolev embedding
Hσ 7→ W 2,∞ as soon as σ > 3:

‖∇ξ(t)‖L∞ . ‖ξ(t)‖Hσ−1 . ‖u(t)‖Hσ . �

Proof of Theorem 1.2. Part (i) and (ii) have already been proven.
(iii) Theorem 1.4 implies in particular that such measures cannot have any atom: indeed, if

u0 is an atom, and c := ‖u0‖L2 then µ
(

u ∈ H2+δ such that ‖u‖L2 = c
)

> 0, but also

µ
(

u ∈ H2+δ such that ‖u‖L2 ∈ (c − ε, c + ε)
)

6 p(2ε) −→
ε→0

0 ,

which is a contradiction.
(iv) Let k > 0. We claim that there exists a choice of the noise parameters (φn)n∈Z2

0
such

that the associated invariant measure µ(k) satisfies

(5.2) Eµ(k) [‖u‖2
Ḣ1 ] ∼ kα(δ) ,
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for some α(δ) > 0. Assuming (5.2), one can finish the proof by letting µ :=
∑

k>1
µ(k)

2k which
is an invariant probability measure by construction. Moreover, observe that for any R > 0 we
have P(‖u‖2

Ḣ2+δ > R) > 0, completing the proof of (iv). Indeed, if there exists R0 > 0 such that

P(‖u‖2
Ḣ2+δ 6 R0) = 1 then for k > R0 we have R2

0 > Eµk [‖u‖2
Ḣ2+δ ] ∼ kα(δ) → ∞ as k → ∞,

which is a contradiction.
It remains to prove (5.2). In view of (4.2) the matter reduces to choosing the φn such that

B0

B
δ

1+δ

1

&δ Kε ,

for some ε > 0. Take α >
ε(1−δ)

2 + δ and define

φn =







e−n if |n| < k
kα

n if k 6 |n| 6 2k

e−(n−2k) if |n| > 2k .

Observe that

B0 =
∑

|n|<k

|φn|2 +
∑

k6|n|62k

|φn|2 +
∑

|n|>2k

|φn|2

= O(1) + k2αO(1) + O(1)

∼ k2α ,

and similarly B1 ∼ k2α+2. Therefore, thanks to the assumption on α we deduce (5.2). �

To complete this paragraph we give a proof of Lemma 5.3.

Proof of Lemma 5.3. We use an elementary argument : let A > 0 be a parameter to be chosen
later. Since for σ ∈ (1, 2 + δ) we have the interpolation inequality

‖u‖Hσ 6 ‖u‖θ(σ)
H1 ‖u‖1−θ(σ)

H2+δ

where θ(σ) := 2+δ−s
1+δ , we write that for any λ > 0 and A > 0:

{‖u‖Hσ > λ} ⊂ {‖u‖H1 > A
− 1

θ(σ) λ} ∪ {‖u‖H2 > A
1

1−θ(σ) λ} ,

so that the Markov inequality implies the bound

P(‖u‖Hσ > λ) 6 P

(

e
γ‖u‖2

H1 > exp
(

γA− 2
θ λ2

))

+ P

(

‖u‖2
H2+δ > A

2
1−θ λ2

)

. exp
(

−A− 2
θ λ2

)

+ A− 2
1−θ λ−2 .

Next, we want to optimise in A in the right-hand side so that both terms have the same size, i.e.,

exp
(

−A− 2
θ λ2

)

≃ A− 2
1−θ λ−2, or taking the logarithm twice in this relation gives 2

θ log A ∼ 2 log λ

and re-plugging in the previous relation suggests the choice A := C(σ)λ− 1
θ log

θ
2 (λ) leading to

P (‖u‖Hs > λ) . λ− 2
1−θ log

θ
1−θ (λ) ,

which concludes the proof recalling the definition of θ. �

6. Properties of the measures

The goal of this section is to prove Theorem 1.4. Note that thanks to the Portmanteau
theorem and the interior regularity of the Lebesgue measure, it is sufficient to prove the following
proposition for the measures µν .

Proposition 6.1. The measures (µν)ν>0 satisfy the following properties.
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(i) There exists a constant C > 0 independent of ν such that for all ε > 0 there hods:

µν (‖u‖L2 < ε) 6 Cε
2(1+δ)

2+δ .

(ii) There exists a continuous increasing function p : R+ → R+ and a constant C > 0 which
does not depend on ν such that for every Borel set Γ ⊂ R+ there holds

µν (‖u‖L2 ∈ Γ) 6 p(|Γ|) .

The proof will heavily rely on Proposition A.4 whose proof is given in Appendix A. The proof
is taken from [KS15] with some minor modifications designed to adapt it to the case of the
article.

Proof of Proposition 6.1. We start with (i). First, we prove that

(6.1) µ
(

{u ∈ L2, 0 < ‖u‖L2 6 ε}
)

. ε
2(1+δ)

2+δ .

We let u(t) = uν(t) be a stationary process for µν satisfying (HVE2
ν). We apply Proposi-

tion A.4 to Γ = [α, β] where α > 0 and g ∈ C2(R) is a function such that g(x) = x
1+δ
2+δ for x > α

and vanishes for x 6 0. This results in

E

∫ β

α
1(a,∞)

(

‖u‖
2(1+δ)

2+δ

L2

)








1 + δ

2 + δ

B0/2 − ‖∇1+δu‖2
L2

‖u‖
2

2+δ

L2

−

(1 + δ)
∑

n∈Z2
0

|φn|2|un|2

(2 + δ)2‖u‖
2(3+δ)

2+δ

L2








da

+ C(δ)
∑

n∈Z2
0

|φn|2E
[

1[α,β]

(

‖u‖
2(1+δ)

2+δ

L2

)

‖u‖− 4
2+δ

L2 u2
n

]

= 0 .

In particular this gives

E

∫ β

α
1(a,∞)

(

‖u‖
2(1+δ)

2+δ

L2

)








1 + δ

2 + δ

B0/2 − ‖∇1+δu‖2
L2

‖u‖
2

2+δ

L2

−

(1 + δ)
∑

n∈Z2
0

|φ2
n||u2

n|

(2 + δ)2‖u‖
2(3+δ)

2+δ

L2








da 6 0 ,

which gives

(6.2) E

∫ β

α

1(a,∞)

(

‖u‖
2(1+δ)

2+δ

L2

)

‖u‖
2(3+δ)

2+δ

L2




B0(1 +

δ

2
)‖u‖2

L2 −
∑

n∈Z2
0

|φn|2u2
n




 da . (β − α)E






‖u‖2
Ḣ1+δ

‖u‖
2

2+δ

L2




 .

Observe that by interpolation

E






‖u‖2
Ḣ1+δ

‖u‖
2

2+δ

L2




 . E

[

‖u‖
2(1+δ)

2+δ

Ḣ2+δ

]

and

B0(1 +
δ

2
)‖u‖2

L2 −
∑

n∈Z2
0

|φn|2u2
n >

δB0

2
‖u‖L2 .

Plugging it into (6.2) provides:

E

[
∫ β

α
1(a,∞)

(

‖u‖
2(1+δ)

2+δ

L2

)

‖u‖− 2
2+δ

L2 da

]

. (β − α) . β ,
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with constants independent of ν. Then for any ε > β one has

E

[
∫ β

α
1(a,∞)

(

‖u‖
2(1+δ)

2+δ

L2

)

‖u‖− 2
2+δ

L2 da

]

> ε− 2
2+δ E

[
∫ β

0
1(a,ε)

(

‖u‖
2(1+δ)

2+δ

L2

)

da

]

= ε− 2
2+δ

∫ β

0
P

(

a
2+δ

2(1+δ) < ‖u‖L2 < ε
2+δ

2(1+δ)

)

da .

so that finally,
1

β

∫ β

0
P

(

a
2+δ

2+2δ < ‖u‖L2 < ε
2+δ

2+2δ

)

da . ε
2

2+δ ,

and then passing to the limit β → 0, one gets (6.1).
In order to complete the proof of (i) we need to prove that µν does not have any atom at 0.

We refer to [Shi11] for details of this proof and also [KS15] for an alternative proof. Here the
dependence on ν is harmless, hence we drop the subscripts. Let µj be the law of the random
variable uj(t) := (u(t), ej)L2 . We will prove that µj has no atom at zero, for any j, thus proving
the desired fact. The Itô formula reads:

uj(t) − uj(0) =

∫ t

0
hj(s) ds +

√
ν
∑

n∈Z2
0

φndβn ,

where hj(s) = (ej , −B(u(s), u(s)) + νLu(s))L2 . Now observe that an application of Proposi-
tion A.4 gives the existence of a random time Λt(a) satisfying

Λt(a) = |uj(t) − a| − |uj(0) − a| −
∫ t

0
1(a,∞)(uj(s))hj(s) ds −

√
ν
∑

n∈Z2
0

φn

∫ t

0
1(a,∞)(uj(s)) dβn(s) .

Taking the expectation and using invariance yields E[Λt(a)] = −tE[1(a, ∞)(uj(0))hj(0)] and
Theorem A.3 implies

2

∫

Γ
E [Λt(a)] da =

√
νB0

∫ t

0
E [1Γ(uj(s))] ds =

√
νtB0P((u, ej)L2 ∈ Γ) .

Combining these two identities and remarking that |hj(0)| . |j|
(

‖u‖2
Ḣ2+δ + 1

)

we see that hj(0)

is of finite expectation thus P(〈u, ej〉L2 ∈ Γ) . ν−1/2ℓ(Γ)E[|hj(0)|]. This finishes the proof that
there is no atom at zero for the measure µν . Combined with the first part this gives statement
(i) for µν .

It remains to prove (ii). Applying Proposition A.4 to g(x) = x and taking the expectation
immediately gives

E




1Γ(‖u‖2

L2)
∑

n∈Z2
0

|φn|2|un|2



 6

∫

Γ
E

[

1(a,∞)(‖u‖2
Ḣ1+δ )‖u‖2

L2

]

da ,

and observe that using the bound for Eµν [‖u‖2
Ḣ2+δ ] = B1 we infer the bound:

∫

Γ
E

[

1(a,∞)(‖u‖2
L2)‖∇1+δu‖2

L2

]

da . |Γ| .

For any N > 1, we introduce φ̃N := min{|φn|, |n| 6 N}. Then we have:
∑

n∈Z2
0

|φn|2|un|2 > φ̃2
N

∑

0<|n|6N

|un|2

= φ̃2
N



‖u‖2
L2 −

∑

|n|>N

|un|2




> φ̃2
N

(

‖u‖2
L2 − N−2(2+δ)‖u‖2

Ḣ2+δ

)

,
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Let ε > 0 and remark that if ‖u‖L2 > ε and ‖u‖Ḣ2+δ 6 ε−1/2 we have
∑

n∈Z2
0

|φn|2|un|2 > φ̃2
N (ε2 − N−2(2+δ)ε−1) .

Let us choose N := N(ε) :=
(

ε3

2

)− 1
2(2+δ) to get

∑

n∈Z2
0

|φn|2|un|2 > 1
2εφ̃2

N(ε) =: κ(ε) where κ(ε)

goes to 0 as ε → 0. Indeed N(ε) → ∞ since (φn)n∈Z2 is summable. We introduce the set

Ωε := {v ∈ L2, such that ‖v‖L2 6 ε or ‖v‖Ḣ2+δ > ε− 1
2 } and remark that

P(Ωε) 6 P(‖u‖L2 6 ε) + P(‖∇2+δu‖L2 > ε−1/2) . ε ,

thanks to the Markov inequality and (i). Then we decompose the set {‖u‖L2 ∈ Γ} on Ωε and
Ωc

ε to obtain the estimate

P (‖u‖L2 ∈ Γ) = P ({‖u‖L2 ∈ Γ} ∩ Ωε) + P ({‖u‖L2 ∈ Γ} ∩ Ωc
ε)

. P(Ωε) + κ(ε)−1
E




1Γ




‖u‖L2

∑

n∈Z2
0

|φn|2|un|2










. ε + κ(ε)−1|Γ| .

Newt, we take ε := ℓ(Γ) if ℓ(Γ) 6= 0 so that P (‖u‖L2 ∈ Γ) 6 p(|Γ|) where p(r) = C
(
r + κ(r)−1r

)
.

Extend p by p(0) = 0 and remark that if |Γ| = 0 then we have P (‖u‖L2 ∈ Γ) . ε → 0 which is
coherent with the definition of p at zero. The proof will be complete when we check that p defines
indeed a continuous increasing function. It is sufficient to prove that κ defines a decreasing
function, which can be seen directly on the definition of κ and can be made continuous up to
some minor modification. �

Appendix A. Tools from stochastic analysis

This appendix gathers some details about Itô formulas and local times for martingales.

A.1. About Itô formulas in infinite dimension. In this section we explain how we have
applied the Itô formula without mentioning the hypotheses in the previous sections. The version
of the Itô formula that we use is due to Shirikyan [Shi02], see also [KS15], Chapter 7 for a
textbook presentation.

Definition A.1. Let us consider a Gelfand triple (V ∗, H, V ) and a probability space (Ω, F ,P).
Let (Ft)t be the filtration associated to identically distributed independent Brownian motions
(βn(t))n∈Z. Let (en)n∈Z be a Hilbertian basis of H and φ : H → H a linear map. Let y(t) be a
Ft progressivly measurable process which writes

y(t) = y(0) +

∫ t

0
x(s) ds +

∑

n∈Z

φ(en)βn(t) .

We assume that u ∈ C0(R+, H) ∩ L2
loc(R+, V ), x is almost surely in L2

loc(R+, V ∗) and
∑

n∈Z

‖φ(en)‖2
H < ∞ .

Such a process is called a standard Itô process.

Proposition A.2 (Itô formula). Let y(t) be a standar Itô process as in Definition A.1. Let
F : H → R be twice differentiable and uniformly continuous on bounded subsets. Assume also
that:
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(i) Let T > 0 and assume that there exists a continuous function KT such that for all
u ∈ V, v ∈ V ∗ there holds

|dF (u; v)| 6 KT (‖u‖H )‖u‖V ‖v‖V ∗ .

(ii) If wk → w in V and v ∈ V ∗ then dF (wk; v) → dF (w; v).

Then there holds:

E[F (y(t))] = E[F (y(0))] +

∫ t

0
E



dF (y(s); x(s)) +
1

2

∑

n∈Z2

d2F (y(t); φ(en), φ(en))



 dt .

Proof. This is a combination of Theorem 7.7.5 and the proof of Corollary 7.7.6 in [KS15]. �

The Itô formula can be applied to the process uν(t) of Section 3 as a Markovian system
with Gelfand triplet (V ∗, H, V ) := (H−δ, H1, H2+δ). The functional F (u) = ‖u‖2

Ḣ1 is such

that dF (·; ·) is continuous on V ∗ × V . We also compute d2F (u; v, v) = 2‖v‖2
H1 , and taking

into account that (B(u, u), u)H1 = 0; which is the key cancellation in dimension 2, at the H1

regularity, the Itô formula reads

E

[

‖uν(t)‖2
Ḣ1

]

− E

[

‖uν(0)‖2
Ḣ1

]

= ν

∫ t

0

(

B1 − 2E
[

‖uν(t′)‖2
Ḣ2+δ

])

dt′ .

Similarly we can apply the Itô formula to G(u) := e
γ‖u‖2

Ḣ1 in dimension 2. We have dG(u; v) =

2γ〈u, v〉H1e
γ‖u‖2

Ḣ1 and the second derivative is d2G(u; v, v) = 2γ
(

‖v‖2
Ḣ1 + 2γ〈u, v〉2

Ḣ1

)

e
γ‖u‖2

Ḣ1

so that all hypotheses of Proposition A.2 are satisfied. Keeping in mind that we have the
cancellation (u, B(u, u))Ḣ1 = 0, the Itô formula now reads:

E

[

e
γ‖uν(t)‖2

Ḣ1

]

= E

[

e
γ‖u0‖2

Ḣ1

]

+ 2γνE





∫ t

0
e

γ‖uν(t′)‖2
Ḣ1




B1

2
− ‖uν(t′)‖2

Ḣ2+δ + γ
∑

n∈Z2

|n|2|φn|2|un(t′)|2


 dt′



 ,

where un(t) = (u(t), en)L2 .

A.2. Local times for martingales. This appendix gathers some preliminary material used in
Section 6. We start with the main abstract result on local times for martingales and explain
how it applies to our purposes.

Theorem A.3 (See [KS91] Theorem 7.1 in Chapter 3). Let y(t) be a standard Itô process of
the form

y(t) = y(0) +

∫ t

0
x(s) ds +

∑

n∈Z

∫ t

0
θn(s) dβn(s) ,

where x(t), θn(t) are Ft-adapted processes such that there holds

E





∫ t

0



|x(s)| +
∑

n∈Z

|θn(s)|2


 ds



 < ∞ for any t > 0 .

Then there exists a random field that we denote by Λt(a, ω), for t > 0, a ∈ R, ω ∈ Ω such that
the following properties hold.

(i) (t, a, ω) 7→ Λt(a, ω) is measurable and for any a ∈ R the process t 7→ Λt(a, ·) is Ft-adapted
continuous and non-decreasing. For any t > 0, and almost every ω ∈ Ω the function
a 7→ Λt(a, ω) is right-continuous.
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(ii) For any non-negative Borel function g : R → R and with probability 1 we have for any
t > 0

(A.1)

∫ t

0
g(y(s))




∑

n∈Z

|θn(s)|2


 ds = 2

∫

R

Λt(a, ω) da .

(iii) For any convex function f : R → R and with probability 1 holds

f(y(t)) = f(y(0)) +

∫ t

0
∂−f(y(s))x(s) ds +

∫

R

Λt(a, ω)∂2f(da)(A.2)

+
∑

n∈Z2

∫ t

0
∂−f(y(s))θn(s) dβn(s) ,

and where ∂−f stands for the subdifferential of f .

In order to be applied in our context, we make the following remarks:

• When (A.2) is applied to the convex function f : x 7→ (x − a)+ we obtain

(y(t) − a)+ − (y(0) − a)+ =

∫ t

0
1[a,∞)(y(s))x(s) ds + Λt(a, ω)

+
∑

n∈Z

∫ t

0
1[a,∞)(y(s))θn(s) dβn(s) .

Then, assuming that both y(s), θn(s) and x(s) are stationary processes we deduce:

(A.3) E [Λt(a, ω)] = −tE
[

1[a,∞)(y(0))x(0)
]

.

• Let Γ ⊂ R be a Borelian, apply (A.1) to g = 1Γ and take the expectation. It writes:

(A.4)

∫

Γ
E [Λt(a)] da =

t

2
E



1Γ(y(0))




∑

n∈Z

|θn(0)|2






 .

Then we can prove the following result.

Proposition A.4. Let µν be a stationary measure for (HVE2
ν) constructed in Section 4. For

any borel set Γ ⊂ R+ and any function g ∈ C2(R) whose second derivative has at most polynomial
growth at infinity we have

Eµν





∫

Γ
1(a,∞)(g(‖u‖2

L2 ))



g′(‖u‖2
L2)

(B0

2
− ‖∇1+δu‖2

L2

)

+ g′′(‖u‖2
L2)

∑

n∈Z2

|φn|2|un|2


 da





+
∑

n∈Z2

|φn|2Eµν

[

1Γ(g(‖u‖2
L2 ))(g′(‖u‖2

L2)|un|)2
]

= 0 ,

where un = (u, en)L2 .

Proof. The proof of this proposition comes from the previous identities. Indeed, let the functional
F : H1 → R defined by F (u) := g(‖u‖2

L2) so that

F ′(u; v) = 2g′(‖u‖2
L2)(u, v)L2 and F ′′(u; v, v) = 2g′(‖u‖2

L2)‖v‖2
L2 + 4g′′(‖u‖2

L2)(u, v)2
L2 .

With such a function g and the process f(t) := g(‖u(t)‖2
L2 ), the Itô formula now reads

(A.5) f(t) = f(0) + ν

∫ t

0
A(s) ds + 2

√
ν
∑

n∈Z2

φn

∫ t

0
g′(‖u‖2

L2)un dβn(s) ,

where after integration by parts, A(t) := g′(‖u‖2
L2)

(

B0 − 2‖u‖2
Ḣ1+δ

)

+4g′′(‖u‖2
L2)

∑

n∈Z2 |φn|2u2
n.
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Remark that for each n ∈ Z
2, the process t 7→ g′(‖u(t)‖L2)(u(t), en)L2 is stationnary. Indeed,

u(t) is an H1 stationary process and the map G : u 7→ g′(‖u‖2
L2)(u, en)L2 is continuous from H1

to C, thus Borelian. Then by Theorem A.3, and more previsely, equation (A.4) we have
∫

Γ
E[Λt(a)] da = 2νt

∑

n∈Z2

|φn|2E
[

1Γ(f)(g′(‖u‖2
L2)|un|)2

]

,

and (A.3) yields E[Λt(a)] = −νtE[1(a,∞)(f(0))A(0)] which concludes the proof. �
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