Reconstruction multiclasse pour l'imagerie TEP 3γ - Archive ouverte HAL
Poster Communications Year : 2023

Reconstruction multiclasse pour l'imagerie TEP 3γ

Abstract

This contribution addresses the problem of image reconstruction of radioactivity distribution for which the available information arises from several classes of data, each associated with a specific combination of detections. We introduce a theoretical framework to measure the amount of information brought by each class and we develop an iterative algorithm dedicated to multi-class reconstruction based on maximum likelihood. We apply our approach to the XEMIS2 camera, a preclinical prototype of a Compton telescope dedicated to 3-photon PET imaging for which four distinct classes of partial detections coexist with the full detection class. Based on Monte Carlo simulations, we present the first elements of our model.
Dans cette contribution, nous abordons le problème de reconstruction d’image de distribution radioactive pour lequel l’information disponible provient de plusieurs classes de données distinctes, chacune associée à une combinaison spécifique de détections. Nous présentons un cadre théorique permettant de mesurer l'apport informationnel de chaque classe et nous développons un algorithme itératif dédié à la reconstruction multiclasse basé sur le maximum de vraisemblance. Nous proposons d’appliquer notre approche à la caméra XEMIS2, un prototype préclinique de télescope Compton dédié à l’imagerie TEP 3-photons dans lequel quatre classes de détections partielles viennent s’ajouter aux détections complètes. Sur la base de simulations Monte-Carlo, nous présentons les premières composantes du modèle développé pour la reconstruction multiclasse.
Fichier principal
Vignette du fichier
latif_Gretsi23_poster.pdf (1.03 Mo) Télécharger le fichier
Origin Files produced by the author(s)
Licence

Dates and versions

hal-04191865 , version 1 (30-08-2023)

Licence

Identifiers

  • HAL Id : hal-04191865 , version 1

Cite

Mehdi Latif, Jérôme Idier, Thomas Carlier, Simon Stute. Reconstruction multiclasse pour l'imagerie TEP 3γ. GRETSI'23, Aug 2023, Grenoble, France. ⟨hal-04191865⟩
63 View
37 Download

Share

More