Equilibrium molecular dynamics evaluation of the solid–liquid friction coefficient: Role of timescales - Archive ouverte HAL Access content directly
Journal Articles The Journal of Chemical Physics Year : 2023

Equilibrium molecular dynamics evaluation of the solid–liquid friction coefficient: Role of timescales

Abstract

Solid–liquid friction plays a key role in nanofluidic systems. Following the pioneering work of Bocquet and Barrat, who proposed to extract the friction coefficient (FC) from the plateau of the Green–Kubo (GK) integral of the solid–liquid shear force autocorrelation, the so-called plateau problem has been identified when applying the method to finite-sized molecular dynamics simulations, e.g., with a liquid confined between parallel solid walls. A variety of approaches have been developed to overcome this problem. Here, we propose another method that is easy to implement, makes no assumptions about the time dependence of the friction kernel, does not require the hydrodynamic system width as an input, and is applicable to a wide range of interfaces. In this method, the FC is evaluated by fitting the GK integral for the timescale range where it slowly decays with time. The fitting function was derived based on an analytical solution of the hydrodynamics equations [Oga et al., Phys. Rev. Res. 3, L032019 (2021)], assuming that the timescales related to the friction kernel and the bulk viscous dissipation can be separated. By comparing the results with those of other GK-based methods and non-equilibrium molecular dynamics, we show that the FC is extracted with excellent accuracy by the present method, even in wettability regimes where other GK-based methods suffer from the plateau problem. Finally, the method is also applicable to grooved solid walls, where the GK integral displays complex behavior at short times.

Dates and versions

hal-04190321 , version 1 (29-08-2023)

Identifiers

Cite

Haruki Oga, Takeshi Omori, Laurent Joly, Yasutaka Yamaguchi. Equilibrium molecular dynamics evaluation of the solid–liquid friction coefficient: Role of timescales. The Journal of Chemical Physics, 2023, 159 (2), ⟨10.1063/5.0155628⟩. ⟨hal-04190321⟩
9 View
0 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More