Embedded AI performances of Nvidia's Jetson Orin SoC series - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Embedded AI performances of Nvidia's Jetson Orin SoC series

Résumé

Energy efficiency is key in many embedded systems that must achieve best performances for a given power budget. Additionally, new neural network-based applications combine multiple processing needs. For such applications, heterogeneous system-on-chips, such as the Nvidia Jetson Orin series, include different computing capabilities to propose new interesting latency and power consumption trade-offs. But, choosing the suitable Jetson module for a given application's need can be confusing since these modules have many operating ranges and several accelerators. In this paper, we evaluate through emulation the embedded performances of popular neural networks to provide a first hands-on insight of all Jetson Orin modules.
Fichier principal
Vignette du fichier
2023_papier_GDRSOC2_Orin_series_v2.pdf (297.35 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04186977 , version 1 (24-08-2023)

Identifiants

  • HAL Id : hal-04186977 , version 1

Citer

Agathe Archet, Nicolas Gac, François Orieux, Nicolas Ventroux. Embedded AI performances of Nvidia's Jetson Orin SoC series. 17ème Colloque National du GDR SOC2, Jun 2023, Lyon, France. ⟨hal-04186977⟩
477 Consultations
862 Téléchargements

Partager

More