Low-latency gravitational wave alert products and their performance in anticipation of the fourth LIGO-Virgo-KAGRA observing run
Résumé
Multi-messenger searches for binary neutron star (BNS) and neutron star-black hole (NSBH) mergers are currently one of the most exciting areas of astronomy. The search for joint electromagnetic and neutrino counterparts to gravitational wave (GW)s has resumed with Advanced LIGO (aLIGO)'s, Advanced Virgo (AdVirgo)'s and KAGRA's fourth observing run (O4). To support this effort, public semi-automated data products are sent in near real-time and include localization and source properties to guide complementary observations. Subsequent refinements, as and when available, are also relayed as updates. In preparation for O4, we have conducted a study using a simulated population of compact binaries and a Mock Data Challenge (MDC) in the form of a real-time replay to optimize and profile the software infrastructure and scientific deliverables. End-to-end performance was tested, including data ingestion, running online search pipelines, performing annotations, and issuing alerts to the astrophysics community. In this paper, we present an overview of the low-latency infrastructure as well as an overview of the performance of the data products to be released during O4 based on a MDC. We report on expected median latencies for the preliminary alert of full bandwidth searches (29.5 s) and for the creation of early warning triggers (-3.1 s), and show consistency and accuracy of released data products using the MDC. This paper provides a performance overview for LVK low-latency alert structure and data products using the MDC in anticipation of O4.