Dense, metric and real-time 3D reconstruction for autonomous drone navigation - Archive ouverte HAL
Poster De Conférence Année : 2021

Dense, metric and real-time 3D reconstruction for autonomous drone navigation

Résumé

The navigation of small drones within an unknown area requires perception and analysis of their surrounding environments, especially in GNSS-denied regions. A way to achieve this is by reconstructing a 3D dense metric map in real time. It allows the drone to localize itself, plan its trajectory and to be aware of potential static and dynamic obstacles. Visual Inertial Odometry (VIO) algorithms focus on robot localization and trajectory, while Simultaneous Localization and Mapping (SLAM) maintains both localization and mapping. These types of algorithms seem to have reached maturity, and now face new challenges related to real applications in robotics. Studies are now towards robustness and efficiency through new sensors and Deep Learning (DL).
Fichier principal
Vignette du fichier
HABIB_Yassine_poster_JJCR2021.pdf_UNCLOUD.pdf (879.55 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04184995 , version 1 (22-08-2023)

Identifiants

  • HAL Id : hal-04184995 , version 1

Citer

Yassine Habib, Panagiotis Papadakis, Cédric Buche, Cédric Le Barz, Antoine Fagette. Dense, metric and real-time 3D reconstruction for autonomous drone navigation. Journées des Jeunes Chercheurs en Robotique (JJCR 2021), Oct 2021, Paris, France. 2021. ⟨hal-04184995⟩

Relations

70 Consultations
33 Téléchargements

Partager

More