Fast and accurate nonlinear interference in-band spectrum prediction for sparse channel allocation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Fast and accurate nonlinear interference in-band spectrum prediction for sparse channel allocation

Résumé

We propose and numerically evaluate a machine-learning-based nonlinear interference spectrum estimator for a coherent optical network. The solution shows a root-mean-squared error of about 0.13 dB compared with split-step Fourier simulation when estimating the nonlinear interference variance.
Fichier principal
Vignette du fichier
Andrenacci_ONDM23.pdf (1.21 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04181570 , version 1 (14-12-2023)

Identifiants

  • HAL Id : hal-04181570 , version 1

Citer

Isaia Andrenacci, Matteo Lonardi, Petros Ramantanis, Elie Awwad, Ekhine Irurozki, et al.. Fast and accurate nonlinear interference in-band spectrum prediction for sparse channel allocation. 27th International Conference on Optical Network Design and Modelling (ONDM 2023), NESC Coimbra - Instituto de Engenharia de Sistemas e Computadores de Coimbra, May 2023, Coimbra, Portugal. ⟨hal-04181570⟩
87 Consultations
63 Téléchargements

Partager

More