Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain

Résumé

In this paper we study the asymptotic behavior of the stationary 3D magneto-micropolar fluid flow through a thin domain, whose thickness is given by a parameter 0 < ε <1. Assuming that the magnetic Reynolds number is written in terms of the thickness ε, we prove that there exists a critical magnetic Reynolds number, namely Recm = ε^{ −2} , such that for every magnetic Reynolds number Rem with order smaller or equal than Recm, the magneto-micropolar fluid flow in the thin domain can be modeled asymptotically when ε tends to zero by a 2D Reynolds-like model, whose expression is also given.
Fichier principal
Vignette du fichier
Anguiano_SuarezGrau_Hal.pdf (346.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04180744 , version 1 (13-08-2023)
hal-04180744 , version 2 (04-01-2024)

Identifiants

  • HAL Id : hal-04180744 , version 1

Citer

María Anguiano, Francisco J. Suárez-Grau. Mathematical derivation of a Reynolds equation for magneto-micropolar fluid flows through a thin domain. 2023. ⟨hal-04180744v1⟩
319 Consultations
137 Téléchargements

Partager

More