Towards a Realistic Surface State of Ru in Aqueous and Gaseous Environments - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Physical Chemistry Letters Année : 2023

Towards a Realistic Surface State of Ru in Aqueous and Gaseous Environments

Résumé

Identifying the surface species is critical in developing a realistic understanding of supported metal catalysts working in water. To this end, we have characterized the surface species present at a Ru/water interface by employing a hybrid computational approach involving an explicit description of the liquid water and a possible pressure of H2. On the close-packed, most stable Ru(0001) facet, the solvation tends to favor the full dissociation of water into atomic O and H in contrast with the partially dissociated water layer reported for ultra-high-vacuum conditions. The solvation stabilization was found to reach −0.279 J m2, which results in stable O and H species on Ru(0001) in the presence of liquid water even at room temperature. Conversely, introducing even a small H2 pressure (10–2 bar) results in a monolayer of chemisorbed H at the interface, a general trend found on the three most exposed facets of Ru nanoparticles. While hydroxyls were often hypothesized as possible surface species at the Ru/water interface, this computational study clearly demonstrates that they are not stabilized by liquid water and are not found under realistic reductive catalytic conditions.
Fichier principal
Vignette du fichier
surf_state_Ru_final.pdf (35.14 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04177918 , version 1 (06-08-2023)

Identifiants

Citer

Muhammad Akif Ramzan, Raphaël Wischert, Stephan N. Steinmann, Carine Michel. Towards a Realistic Surface State of Ru in Aqueous and Gaseous Environments. Journal of Physical Chemistry Letters, 2023, 14 (18), pp.4241-4246. ⟨10.1021/acs.jpclett.3c00313⟩. ⟨hal-04177918⟩
17 Consultations
2 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More