Fusion regression methods with repeated functional data - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Fusion regression methods with repeated functional data

Résumé

Linear regression and classification methods with repeated functional data are considered. For each statistical unit in the sample, a real-valued parameter is observed over time under different conditions. Two regression methods based on fusion penalties are presented. The first one is a generalization of the variable fusion methodology based on the 1-nearest neighbor. The second one, called group fusion lasso, assumes some grouping structure of conditions and allows for homogeneity among the regression coefficient functions within groups. A finite sample numerical simulation and an application on EEG data are presented.
Fichier principal
Vignette du fichier
28_11_23.pdf (1.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04176783 , version 1 (03-08-2023)
hal-04176783 , version 2 (28-11-2023)
hal-04176783 , version 3 (11-09-2024)
hal-04176783 , version 4 (20-09-2024)

Identifiants

  • HAL Id : hal-04176783 , version 2

Citer

Issam-Ali Moindjié, Cristian Preda, Sophie Dabo-Niang. Fusion regression methods with repeated functional data. 2023. ⟨hal-04176783v2⟩
106 Consultations
104 Téléchargements

Partager

More