Error estimates of a theta-scheme for second-order mean field games - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2022

Error estimates of a theta-scheme for second-order mean field games

Résumé

We introduce and analyze a new finite-difference scheme, relying on the theta-method, for solving monotone second-order mean field games. These games consist of a coupled system of the Fokker-Planck and the Hamilton-Jacobi-Bellman equation. The theta-method is used for discretizing the diffusion terms: we approximate them with a convex combination of an implicit and an explicit term. On contrast, we use an explicit centered scheme for the first-order terms. Assuming that the running cost is strongly convex and regular, we first prove the monotonicity and the stability of our theta-scheme, under a CFL condition. Taking advantage of the regularity of the solution of the continuous problem, we estimate the consistency error of the theta-scheme. Our main result is a convergence rate of order O(h^r) for the theta-scheme, where h is the step length of the space variable and r ∈ (0, 1) is related to the Hölder continuity of the solution of the continuous problem and some of its derivatives.
Fichier principal
Vignette du fichier
BLP2022_hal.pdf (559.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04175251 , version 1 (15-12-2022)
hal-04175251 , version 2 (22-05-2023)
hal-04175251 , version 3 (01-08-2023)

Identifiants

  • HAL Id : hal-04175251 , version 1

Citer

J. Frédéric Bonnans, Kang Liu, Laurent Pfeiffer. Error estimates of a theta-scheme for second-order mean field games. 2022. ⟨hal-04175251v1⟩
158 Consultations
131 Téléchargements

Partager

More