Federated machine learning through edge ready architectures with privacy preservation as a service - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Federated machine learning through edge ready architectures with privacy preservation as a service

Konstantinos Koutsopoulos
  • Fonction : Auteur correspondant
Benjamin Ertl
  • Fonction : Auteur
  • PersonId : 948728
Spyridon Tompros
  • Fonction : Auteur
Katarzyna Kapusta
  • Fonction : Auteur
  • PersonId : 1189761
Anastasius Gavras
  • Fonction : Auteur
Giannis Ledakis
  • Fonction : Auteur
Orazio Toscano
  • Fonction : Auteur
Stefan Covaci
  • Fonction : Auteur
Christoph Thuemmler
  • Fonction : Auteur

Résumé

This paper presents the details of a novel approach, based on edge and advanced privacy preserving solutions, that tries to accelerate the adoption of personal data federation for the benefit of the evolution of valuable advanced AI models. The approach focuses on the establishment of high degree of trust between data owner and data management infrastructure so that consent in data processing is given by means of functional and enforceable options applicable at all levels of workloads and processes. The overall set of solutions will be delivered as an open-source set of implementations in the context of the PAROMA-MED project.
Fichier non déposé

Dates et versions

hal-04167412 , version 1 (20-07-2023)

Identifiants

Citer

Konstantinos Koutsopoulos, Antoine Simon, Benjamin Ertl, Spyridon Tompros, Katarzyna Kapusta, et al.. Federated machine learning through edge ready architectures with privacy preservation as a service. IEEE Future Networks World Forum (FNWF), Oct 2022, Montreal, Canada. ⟨10.1109/FNWF55208.2022.00067⟩. ⟨hal-04167412⟩
28 Consultations
0 Téléchargements

Altmetric

Partager

More