EXISTENCE AND STABILITY OF NONMONOTONE HYDRAULIC SHOCKS FOR THE SAINT VENANT EQUATIONS OF INCLINED THIN-FILM FLOW - Archive ouverte HAL
Article Dans Une Revue Archive for Rational Mechanics and Analysis Année : 2024

EXISTENCE AND STABILITY OF NONMONOTONE HYDRAULIC SHOCKS FOR THE SAINT VENANT EQUATIONS OF INCLINED THIN-FILM FLOW

Grégory Faye
Zhao Yang
  • Fonction : Auteur
  • PersonId : 1271197
Kevin Zumbrun
  • Fonction : Auteur
  • PersonId : 836672

Résumé

Extending work of Yang-Zumbrun for the hydrodynamically stable case of Froude number F < 2, we categorize completely the existence and convective stability of hydraulic shock profiles of the Saint Venant equations of inclined thin-film flow. Moreover, we confirm by numerical experiment that asymptotic dynamics for general Riemann data is given in the hydrodynamic instability regime by either stable hydraulic shock waves, or a pattern consisting of an invading roll wave front separated by a finite terminating Lax shock from a constant state at plus infinity. Notably, profiles, and existence and stability diagrams are all rigorously obtained by mathematical analysis and explicit calculation.
Fichier principal
Vignette du fichier
nonmonotone-SV_final.pdf (2.72 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04165596 , version 1 (19-07-2023)

Identifiants

Citer

Grégory Faye, L. Miguel Rodrigues, Zhao Yang, Kevin Zumbrun. EXISTENCE AND STABILITY OF NONMONOTONE HYDRAULIC SHOCKS FOR THE SAINT VENANT EQUATIONS OF INCLINED THIN-FILM FLOW. Archive for Rational Mechanics and Analysis, 2024, 248 (5), pp.82. ⟨10.1007/s00205-024-02033-4⟩. ⟨hal-04165596⟩
74 Consultations
133 Téléchargements

Altmetric

Partager

More