The Jacobs--Keane theorem from the $\mathcal{S}$-adic viewpoint - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

The Jacobs--Keane theorem from the $\mathcal{S}$-adic viewpoint

Résumé

In the light of recent developments of the ${\mathcal S}$-adic study of subshifts, we revisit, within this framework, a well-known result on Toeplitz subshifts due to Jacobs--Keane giving a sufficient combinatorial condition to ensure discrete spectrum. We show that the notion of coincidences, originally introduced in the '$70$s for the study of the discrete spectrum of substitution subshifts, together with the ${\mathcal S}$-adic structure of the subshift allow to go deeper in the study of Toeplitz subshifts. We characterize spectral properties of the factor maps onto the maximal equicontinuous topological factors by means of coincidences density. We also provide an easy to check necessary and sufficient condition to ensure unique ergodicity for constant length ${\mathcal S}$-adic subshifts.
Fichier principal
Vignette du fichier
main.pdf (424.24 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04163989 , version 1 (17-07-2023)

Identifiants

  • HAL Id : hal-04163989 , version 1

Citer

Felipe Arbulú, Fabien Durand, Bastián Espinoza. The Jacobs--Keane theorem from the $\mathcal{S}$-adic viewpoint. 2023. ⟨hal-04163989⟩

Relations

47 Consultations
84 Téléchargements

Partager

More