
HAL Id: hal-04163989
https://hal.science/hal-04163989v1

Preprint submitted on 17 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Jacobs–Keane theorem from the S-adic viewpoint
Felipe Arbulú, Fabien Durand, Bastián Espinoza

To cite this version:
Felipe Arbulú, Fabien Durand, Bastián Espinoza. The Jacobs–Keane theorem from the S-adic view-
point. 2023. �hal-04163989�

https://hal.science/hal-04163989v1
https://hal.archives-ouvertes.fr


THE JACOBS–KEANE THEOREM FROM THE S-ADIC

VIEWPOINT

FELIPE ARBULÚ, FABIEN DURAND, AND BASTIÁN ESPINOZA

Abstract. In the light of recent developments of the S-adic study of sub-
shifts, we revisit, within this framework, a well-known result on Toeplitz sub-
shifts due to Jacobs–Keane giving a sufficient combinatorial condition to en-
sure discrete spectrum. We show that the notion of coincidences, originally
introduced in the ’70s for the study of the discrete spectrum of substitution
subshifts, together with the S-adic structure of the subshift allow to go deeper
in the study of Toeplitz subshifts. We characterize spectral properties of the
factor maps onto the maximal equicontinuous topological factors by means of
coincidences density. We also provide an easy to check necessary and sufficient
condition to ensure unique ergodicity for constant length S-adic subshifts.

1. Introduction

A series of recent works shows that the underlying S-adic structures of zero-
entropy subshifts shed new light on the study of their properties as shown by
[BSTY19, BCBD+21, DDMP21, EM22, Esp22, GLL22, AD23, Esp23]. This ap-
proach, which goes back to [LV92, Fer96], consists in finding a representation of
the subshift in terms of an infinite sequence of morphisms defined on finitely gen-
erated monoids. For more references on this subject, see the general references
[BD14, DP22].

In the present work we investigate the spectral properties of Toeplitz subshifts
through the S-adic perspective. For a sequence x = (xn)n∈Z ∈ A

Z on some fi-
nite alphabet A and p ≥ 0, we denote by Perp(x) the set of integers n such that
(xn+kp)k∈Z is constant. The aperiodic part of x is the set

Aper(x) = Z \
⋃

p≥0

Perp(x).

A Toeplitz sequence is a non periodic sequence x such that Aper(x) = ∅ and a
Toeplitz subshift is the subshift generated by a Toeplitz sequence x, i.e., the shift
orbit closure of x.

Toeplitz sequences x always have a periodic structure, that is, a sequence (pn)n≥0

such that for all n ≥ 0 we have

• Perpn
(x) 6= ∅ and Perpn

(x) 6= Perq(x) for all 0 ≤ q < pn;
• pn divides pn+1; and
• ∪n≥0 Perpn

(x) = Z.
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This results, topologically, in a maximal equicontinuous topological factor which is
the odometer [Wil84]. A famous result of Jacobs and Keane [JK69, Mar75, Dow05]
gives a sufficient condition by means of this periodic structure to ensure that the
Toeplitz subshift has discrete spectrum, that is, there exists a measure theoretical
isomorphism between the subshift and a translation on a compact Abelian group.

In this paper we revisit this result through the S-adic framework. Indeed from
[GJ00, Theorem 8] (see also [DP22, Theorem 6.1.7]) we know that Toeplitz sub-
shifts are generated by proper, constant length, primitive and recognizable S-adic
sequences. We will precise this can be relaxed changing “proper” by “having coin-
cidences” in Proposition 7.

Observe that when a minimal dynamical system (X,T ) continuously factorizes
onto a group rotation then the factor map is unique up to a translation. Thus
below we will speak about “the” factor map instead of “a” factor map. We denote
by πmeq this continuous factor map.

In [JK69, Theorem 6] the authors show that for a Toeplitz subshift the equivalent
conditions in Item 2 and Item 3 below imply the discrete spectrum of the system.
However, these conditions are not necessary for the discrete spectrum. Indeed, they
are equivalent to the strictly stronger condition that the subshift is a regular ex-
tension of its maximal equicontinuous topological factor (the union of the singleton
πmeq-fibers has full measure). For more details see Section 2.1. There exist discrete
spectrum Toeplitz subshifts that do not fulfill this condition (see Section 6).

The difference between regularity and having discrete spectrum has been studied
in detail in [DG16, GR17, HLSY21, GRJY21] for topological dynamical systems.
There are given various strictly different notions, from topological to more mea-
surable ones, all implying the discrete spectrum, such as mean equicontinuity or
µ-mean equicontinuity (which is equivalent to the discrete spectrum relative to µ).

In our work we introduced the point of view of coincidences to propose a more
computable way to see the discrete spectrum. This allows us to build many exam-
ples having various spectral and ergodic properties.

The notion of coincidence is quantified below by the term “coinc” that is defined
in Section 2.4. Coincidences have shown to be very relevant to detect the pure
discrete spectrum. For example, in the context of constant length substitution
subshifts [Dek78], two-symbol Pisot substitutions [BD02, HS03] or more general
substitutions [Liv87, Que87]. Moreover, this notion has been intensively used to
tackle the Pisot substitution conjecture [CS01, Fog02, BK06, BBK06].

For a subset A ⊆ Z, the density of A is dens(A) = lim supN→+∞
|A∩[0,N)|

N
.

Theorem 1. Let (X,S) be the subshift generated by the Toeplitz sequence x with
periodic structure (pn)n≥0. Then, X is defined by some constant length, recognizable
directive sequence with coincidences τ = (τn)n≥0 and the following are equivalent:

(1) (X,S) is a regular extension of its maximal equicontinuous topological fac-
tor: the union of the singleton πmeq-fibers has full measure.

(2) dens(Perpn
(x))→ 1 as n→∞.

(3) dens(Aper(y)) = 0 for every y ∈ X.
(4) For every n ≥ 0, we have

lim
N→+∞

|coinc(τ[n,N))|

|τ[n,N)|
= 1.
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(5) We have

lim
N→+∞

|coinc(τ[0,N))|

|τ[0,N)|
= 1.

(6) There is a contraction τ
′ = (τ ′k)k≥0 of τ such that

∑

k≥0

|coinc(τ ′k)|

|τ ′k|
= +∞.

Moreover, any of these conditions implies that (X,S) is uniquely ergodic and that
πmeq is a measure theoretical isomorphism between (X,S) and its maximal equicon-
tinuous topological factor.

It is observed in [GRJY21, Theorem 4.12][Theorem 54]Gar17 that for a minimal
topological dynamical system the regularity condition is equivalent to the diam-
mean equicontinuity property.

The S-adic approach also allows us to study measure-theoretic aspects of a sub-
shift. This is done by considering the notion of adapted directive sequences. Roughly
speaking, when considering adapted sequences we get rid of parts of the system that
are negligible.

We present a variation of Theorem 1 in terms of coincidence densities relative to
the non negligible part of the system. This result is stated for subshifts generated
by constant length directive sequences. It includes the case of Toeplitz subshifts
as shown by Proposition 7, but also cases of non Toeplitz, non uniquely ergodic
subshifts.

Theorem 2. Let X be generated by the constant length, recognizable and primitive
directive sequence τ = (τn : A∗

n+1 → A
∗
n)n≥0. Suppose that τ is (A′

n)n≥0-adapted
to an ergodic measure µ of X. The following conditions are equivalent.

(1) The map πmeq : (X,S, µ)→ (Z(|τ[0,n)|)n≥0
,+1, ν) defines a measure-theoretic

isomorphism.
(2) For every n ≥ 0, we have

lim sup
N→+∞

|coincA′
N
(τ[n,N))|

|τ[n,N)|
= 1.

We illustrate below, as applications of our results, various behaviours of Toeplitz
subshifts with respect to discrete spectrum. They are detailed in Section 6.

Let A = {a, b} and consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such
that for all n ≥ 0 the morphism τn : A∗ → A∗ is defined by

a 7→ an
2

baan
2

, b 7→ bn
2

aabn
2

.

The Toeplitz subshift (Xτ , S) is not a regular extension of its maximal equicon-
tinuous topological factor, it has two ergodic measures µa and µb. Moreover, the
map πmeq defines a measure theoretical isomorphism to the maximal equicontinuous
topological factor for both (Xτ , S, µa) and (Xτ , S, µb) (see Section 6.3).

Now let A = {a, b, c} and consider the directive sequence τ = (τn : A∗ → A∗)n≥0

such that for all n ≥ 0 the morphism τn : A∗ → A∗ is defined by

a 7→ (ab)n
2+1ac(ab)n

2+1, b 7→ (ab)n
2+1bc(ab)n

2+1, c 7→ c(ab)n
2

cccc(ab)n
2

c.

The Toeplitz subshift (Xτ , S) is not a regular extension of its maximal equicon-
tinuous topological factor, it possesses a unique invariant probability measure µ
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such that πmeq is a measure theoretical isomorphism to its maximal equicontinuous
topological factor (see Section 6.4). As far as we know, the first such example was
given in [DK15, Section 5].

Other interesting examples are the following. Let A = {a, b, c}, m : N → N

defined by 2m(n) + 3 = 3n for each n ≥ 0 and consider the directive sequence
τ = (τn : A∗ → A∗)n≥0 such that for all n ≥ 0 the morphism τn : A∗ → A∗ is

a 7→ (ab)m(n)abc, b 7→ a(ab)m(n)ac, c 7→ (ab)m(n)cbc.

The Toeplitz subshift (Xτ , S) is such that its maximal equicontinuous topological
factor is (Z3,+1). Moreover it has a unique ergodic measure µ. Nevertheless πmeq

is not a measure theoretical isomorphism, but (Xτ , S, µ) has discrete spectrum: it
is measure theoretically isomorphic to (Z3 × Z/2Z,+(1, 1)) (see Section 6.5).

Let A = {1, 2, a, b, c}, s : N→ N a nonnegative function such that 2s(n)+5 = 3n

for n ≥ 0 and consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such that for
all n ≥ 0 the morphism τn : A∗ → A∗ is defined by

1 7→ a(12)s(n)12bc, a 7→ (ab)s(n)ab12c
2 7→ a(12)s(n)21bc, b 7→ a(ab)s(n)b12c

c 7→ (ab)s(n)ab12c.

The Toeplitz subshift (Xτ , S) has two ergodic measures µ and ν and its maximal
equicontinuous topological factor is (Z3,+1). The map πmeq is a measure theoretical
isomorphism for the measure µ whereas it is not for the measure ν. Nevertheless,
the system (Xτ , S, ν) has discrete spectrum: it is measure theoretically isomorphic
to (Z3 × Z/2Z,+(1, 1)) (see Section 6.6).

Let A = {1, 2}, s : N→ N a nonnegative function such that 3s(n) + 1 = 52n for
n ≥ 0 and consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such that for all
n ≥ 0 the morphism τn : A∗ → A∗ is defined by

1 7→ (121)s(n)2, 2 7→ 1(121)s(n).

The Toeplitz subshift (Xτ , S) has a unique ergodic measure µ. However, (Xτ , S, µ)
does not have discrete spectrum (see Section 6.7).

Finally we consider an example of a minimal non Toeplitz subshift generated
by a constant length directive sequence that has positive entropy and where the
conclusion of Theorem 2 holds (see Section 6.8).
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2. Background

2.1. Basics in topological dynamics. A topological dynamical system (or just a
system) is a pair (X,T ) where X is a compact metric space and T : X → X is a
homeomorphism. The system (X,T ) is minimal if for every point x ∈ X the orbit
{T nx : n ∈ Z} is dense in X .
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Let (X,T ) and (Y, S) be two topological dynamical systems. We say that (Y, S)
is a topological factor of (X,T ) if there exists a continuous and onto map π : X → Y
such that

(1) π ◦ T = S ◦ π.

In this case, we say that π is a factor map and that (X,T ) is an extension of (Y, S).
If in addition the map π in (1) is a homeomorphism, we say that it is a topological
conjugacy and that (X,T ) and (Y, S) are topologically conjugate.

Let (X,T ) be a uniquely ergodic system and denote by µ its unique invariant
probability measure. We say that (X,T ) is a regular extension of (Y, S) if there
exists a factor map π : X → Y such that

(2) µ({x ∈ X : |π−1({π(x)})| = 1}) = 1.

Any topological dynamical system (X,T ) possesses a maximal equicontinuous
topological factor [EG60], that is, there exists an equicontinuous system (Y, S) and
a factor map π : X → Y such that every other equicontinuous factor of (X,T ) is a
factor of (Y, S). The system (Y, S) is unique up to topological conjugacy. Moreover,
if (X,T ) is minimal, then (Y, S) corresponds to a rotation on a compact abelian
group and we usually denote by ν the Haar measure on Y .

In the minimal case, if (X,T ) is a regular extension of its maximal equicontinuous
topological factor (Y, S), then condition (2) is equivalent to

(3) ν({y ∈ Y : |π−1({y})| = 1}) = 1.

Moreover, since any two such factor maps differ only by a translation, condition
(3) is independent of the choice of the factor map π and of the representation of
(Y, S) in its conjugacy class.

2.2. Subshifts. Let A be a finite and nonempty set that we call alphabet. Elements
in A are called letters or symbols. The number of letters of A is denoted by |A|.
The set of finite sequences or words of length ℓ ∈ N with letters in A is denoted by
Aℓ. The full shift AZ is the set of all bi-infinite sequences (xn)n∈Z with xn ∈ A for
all n ∈ Z.

A word w = w0w1 . . . wℓ−1 ∈ Aℓ can be seen as an element of the free monoid
A∗ endowed with the operation of concatenation (whose neutral element is ε, the
empty word). The integer ℓ is the length of the word w and is denoted by |w| = ℓ;
the length of the empty word is 0. We say that a word w occurs in a sequence
x = (xn)n∈Z ∈ X if there exists m ∈ Z such that w = xm · · ·xm+|w|−1. We use the
same notion for words. For such a word w in A∗ and a letter a in A, the number of
occurrences of a in w is denoted by |w|a. A nonempty word w = w0w1 . . . wℓ−1 ∈ A∗

starts (resp. ends) with a nonempty word u ∈ A∗ if u = w0 . . . wi−1 for some i ≤ ℓ
(resp. u = wj . . . wℓ−1 for some j ≥ 0).

The shift map S : AZ → AZ is defined by S((xn)n∈Z) = (xn+1)n∈Z. A subshift is
a subset X of a fullshift AZ which is closed for the product topology and invariant
under the shift map. Thus (X,S) is a topological dynamical system that we also
call subshift.

Let (X,S) be a subshift. For x ∈ X and i, j ∈ Z with i < j we define x[i,j) =
xixi+1 . . . xj−1. The language of (X,S) is the set L(X) containing all words w ∈ A∗

such that w = x[m,m+|w|) for some x = (xn)n∈Z ∈ X and m ∈ Z. In this case, we
also say that w is a factor (also called subword) of x. Given x ∈ X , the language
L(x) is the set of all words that occur in x. For two words u, v ∈ L(X), the cylinder
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set [u.v] is the set {x ∈ X : x[−|u|,|v|) = uv}. When u is the empty word we only
write [v], erasing the dot. We remark that cylinder sets are clopen sets and they
form a base for the topology of the subshift.

2.3. Morphisms and substitutions. By a morphism we simply mean a mor-
phism τ : A∗ → B∗ between the free monoids A∗ and B∗ for some finite alphabets
A and B. We say that τ is erasing whenever there exists a in A such that τ(a) is
the empty word. Otherwise we say it is nonerasing.

The morphism τ is positive if for all a in A every letter of B occurs in τ(a). The
morphism τ is proper if there exist p and s in B such that τ(a) starts with p and ends
with s for every letter a in A. The morphism τ is of constant length if the length
of the word τ(a) does not depend on a. In that case, we denote by |τ | the length
of the word τ(a) for any a in A. Observe that if τ : A∗ → B∗ and σ : B∗ → C∗ are
morphisms of constant length, then the morphism σ ◦ τ is of constant length and

|σ ◦ τ | = |σ||τ |.

When it is nonerasing, τ extends naturally to maps from AN to itself and from
AZ to itself in the obvious way by concatenation (in the case of a two-sided sequence
we apply τ to positive and negative coordinates separately and we concatenate the
results at the coordinate zero).

To the morphism τ : A∗ → B∗ we associate a composition matrix Mτ indexed
by B ×A such that its entry at position (b, a) is the number of occurrences of b in
τ(a) for every a ∈ A and b ∈ B.

2.4. Coincidences of constant length morphisms. Throughout this article we
will use the notion of coincidences of constant length morphisms. Let τ : A∗ → B∗

be a constant length morphism. A coincidence of τ relative to A′ ⊆ A is an integer
i ∈ [0, |τ |) such that the map that sends a letter a in A′ to the i-th letter of τ(a) is
constant. We denote by coincA′(τ) the set of such integers. When A′ = A we just
say these integers are coincidences and denote the set of such integers by coinc(τ).

The following lemma states how coincidences behave when morphisms are com-
posed. The elementary proof is left to the reader.

Lemma 3. Let τ : A∗ → B∗ and σ : B∗ → C∗ be two morphisms of constant length.
Then the set coinc(σ ◦ τ) contains the disjoint union

{i|σ|+ j : i ∈ coinc(τ), 0 ≤ j < |σ|}

∪ {i|σ|+ j : i ∈ [0, |τ |) \ coinc(τ), j ∈ coinc(σ)}

and we have

(4) 1−
|coinc(σ ◦ τ)|

|σ ◦ τ |
≤

(

1−
|coinc(σ)|

|σ|

)(

1−
|coinc(τ)|

|τ |

)

.

Moreover, if |A| = |B| = 2 then inequality (4) is an equality between both terms.

2.5. S-adic subshifts. A directive sequence τ = (τn : A∗
n+1 → A

∗
n)n≥0 is a se-

quence of morphisms. From now on, we only consider morphisms that are noneras-
ing. When all morphisms τn for n ≥ 1 are proper we say that τ is proper; and
when all morphisms τn for n ≥ 1 are of constant length we say that τ is of constant
length.
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For 0 ≤ n < N , we denote by τ[n,N) or τ[n,N−1] the morphism τn◦τn+1◦· · ·◦τN−1.
We say τ is primitive if for any n ∈ N there exists N > n such that Mτ[n,N)

> 0,

i.e., all letters in An occur in τ[n,N)(a) for all a ∈ AN .

For n ∈ N, the language L(n)(τ ) of level n associated with τ is defined by

L(n)(τ ) =
{

w ∈ A∗
n : w occurs in τ[n,N)(a) for some a ∈ AN and N > n

}

and X
(n)
τ is the set of points x ∈ AZ

n such that L(x) ⊆ L(n)(τ ). When nonempty,
this set clearly defines a subshift that we call the subshift generated by L(n)(τ ).

We set Xτ = X
(0)
τ and call (Xτ , S) the S-adic subshift generated by the directive

sequence τ . See [DP22, Chapter 6] for more details.
A contraction of τ = (τn : A∗

n+1 → A
∗
n)n≥0 is a directive sequence of the form

τ
′ = (τ ′k = τ[nk,nk+1) : A

∗
nk+1

→ A∗
nk
)k≥0,

where the sequence (nk)k≥0 is such that n0 = 0 and nk < nk+1 for all k ≥ 0.
Observe that any contraction of τ generates the same S-adic subshift Xτ .

Inspired by the definition of substitutions with coincidences in [Dek78], we say
a constant length directive sequence τ has coincidences if there is a contraction
τ
′ = (τ ′k)k≥0 of τ such that coinc(τ ′k) 6= ∅ for all k ≥ 0.
One says that τ has finite alphabet rank when lim infn→+∞ |An| < +∞. This

notion is related to the topological rank defined more generally for minimal Cantor
systems. We refer to [DDMP21] for more details about their interaction.

2.6. Recognizability and dynamical partitions. We now present the recog-
nizability property for morphisms and directive sequences in terms of topological
partitions. The usual definition and a more general discussion can be found in
[BSTY19, BPR23, BPRS23].

Let τ : A∗ → B∗ be a nonerasing morphism and let X ⊆ AZ be a subshift. We
say that τ is recognizable on X if

P = {Skτ([a]) : a ∈ A, 0 ≤ k < |τ(a)|}

defines a partition of the subshift
⋃

k∈Z
Skτ(X).

We say that a directive sequence τ = (τn : A∗
n+1 → A

∗
n)n≥0 is recognizable if

(5) Pn = {Skτ[0,n)([a]) : a ∈ An, 0 ≤ k < |τ[0,n)(a)|}, n ≥ 0,

defines a sequence of partitions of Xτ . We have that τ is recognizable if and only

if for each n ≥ 0 the morphism τn is recognizable on X
(n+1)
τ [BSTY19, Section 4].

It will be convenient, in order to manipulate these partitions, to consider the
following definitions. For n ≥ 0 and a ∈ An, we denote by

(6) Tn(a) =
⋃

0≤k<|τ[0,n)(a)|

Skτ[0,n)([a])

the tower indexed by a and by Bn(a) the base τ[0,n)([a]) of this tower. The base of
Pn is

(7) Bn =
⋃

a∈An

Bn(a).

We make here two important observations about (Pn)n≥0. For any 0 ≤ n < m,

(1) the partition Pm is finer than the partition Pn; and
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(2) we have that

(8) |{k ∈ [0, |τ[0,m)(b)|) : S
kBm(b) ⊆ Bn(a)}| = |τ[n,m)(b)|a, a ∈ An, b ∈ Am.

We now state a fundamental theorem for the ergodic and topological study of
S-adic subshifts.

Theorem 4 ([BSTY19, Lemma 6.3]). Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a rec-

ognizable directive sequence and µ an invariant measure of (Xτ , S). Then, for
µ-almost all x ∈ Xτ , the set

⋂

n≥0 S
knτ[0,n)([an]) is a singleton, where (kn, an)n≥0

for n ≥ 0 is the (Pn)n≥0-address of x, that is, the unique sequence satisfying
x ∈ Sknτ[0,n)([an]), n ≥ 0.

We end this section with the following remark: if in addition to recognizability
the sequence τ is assumed to be primitive and proper, then the atoms of

⋃

n≥0 Pn

generate the topology of Xτ [DL12, Proposition 2.2].

2.7. Invariant measures. Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a recognizable direc-

tive sequence and µ be an invariant measure of (Xτ , S). In this context, Theorem 4
implies the following.

Corollary 5. The sequence (Pn)n≥0 µ-generates the Borel σ-algebra of Xτ , that
is, µ is uniquely determined by the values it assigns to Bn(a), a ∈ An, n ≥ 0.

This motivates the following. For n ≥ 0 we define the column vector µn by

µn = (µn(a) : a ∈ An), where µn(a) = µ(Bn(a)).

Since τ is recognizable, we have

(9) µm = Mτ[m,n)
µn, 0 ≤ m < n.

The measure of the tower indexed by a is

(10) µ(Tn(a))) = µ(Bn(a))|τ[0,n)| = µn(a)|τ[0,n)|, n ≥ 0.

When dealing with measure theoretical arguments, it is natural to get rid of small
portions of the space. We will need the definition of adapted directive sequences to
state our main results, where we distinguish those towers with small measure and
those with a measure uniformly bounded away from zero.

For each n ≥ 0 let A′
n ⊆ An be a nonempty alphabet and set

T ′
n =

⋃

a∈A′
n

Tn(a), T
′
≥n =

⋂

m≥n

T ′
m, T ′ =

⋃

n≥0

T ′
≥n.

Observe that T ′ = lim infn→+∞ T ′
n.

We say that τ is (A′
n)n≥0-weakly-adapted to µ if

(11)
∑

n≥0

µ(Xτ \ T
′
n) < +∞.

If in addition there exists δ > 0 such that

(12) µ(Tn(a)) ≥ δ, a ∈ A′
n, n ≥ 0,

we say that τ is (A′
n)n≥0-adapted to µ (for the constant δ). Observe that in such

case supn≥0 |A
′
n| is bounded by 1/δ.

When τ has finite alphabet rank, up to a contraction and a renaming of the
alphabets, there exists Aµ ⊆ An for all n ≥ 0 such that τ is (Aµ)-adapted to µ.
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The previous definitions are inspired by the definition of clean Bratteli diagrams
in [BDM10] (see also [BKMS13, Section 3]).

In the weakly-adapted case, the Borel–Cantelli lemma implies that

(13) µ(T ′) = 1.

2.8. Convergence of frequencies. It is a well known fact that for substitutions
systems the measures µ(Bn(a)) correspond to the letter frequencies of the iterates
of the substitution [Que87, Chapter 5]. A similar result was proved in [BKMS13,
Proposition 5.1] in the more general context of uniquely ergodic Bratteli–Vershik
systems.

In this paper, we will need an extension of these results that is valid for the class
of non uniquely ergodic systems we later consider.

Proposition 6. Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a primitive and recognizable

directive sequence, let µ an ergodic measure for (Xτ , S) and let (bm)m≥0 a sequence
of letters with bm in Am. Suppose that any of the following conditions hold:

(1) there exists a µ-generic point x in Xτ such that x ∈ Tm(bm) for all m ≥ 0;
(2) lim infm→+∞ µ(Tm(bm)) > 0;
(3) τ is (A′

n)n≥0-adapted to µ and bm belongs to A′
m for all m ≥ 0;

(4) the system (Xτ , S) is uniquely ergodic.

Then, for any n ≥ 0 and a ∈ An, we have

(14) lim
m→+∞

|τ[n,m)(bm)|a

|τ[0,m)(bm)|
= µ(Bn(a)).

Proof. Let x be a µ-generic point such that x belongs to Tm(bm) for all m ≥ 0. We
define im = max{k ≤ 0 : Skx ∈ Bm} and jm = min{k > 0 : Skx ∈ Bm}. Observe
that jm − im = |τ[0,m)(bm)|. Since τ is recognizable, from (8) we get, for n < m,

|{k ∈ [0, |τ[0,m)(bm)|) : SkBm(bm) ⊆ Bn(a)}| = |τ[n,m)(bm)|a, bm ∈ Am.

This implies, as Simx and Sjmx are in Bm(bm) and Pm is finer than Pn, that

|{k ∈ [im, jm) : Skx ∈ Bn(a)}| = |τ[n,m)(bm)|a.

The left-hand side corresponds to the ergodic sum
∑

k∈[im,jm) 1Bn(a)(S
kx) of the

indicator function 1Bn(a). Hence, since x is µ-generic, we conclude that

lim
m→+∞

|τ[n,m)(bm)|a

|τ[n,m)(bm)|
= lim

m→+∞

1

jm − im

∑

k∈[im,jm)

1Bn(a)(S
kx) = µ(Bn(a))

and (14) holds.

Now suppose that lim infm→+∞ µ(Tm(bm)) > 0. We assume, with the aim to

obtain a contradiction, that there exist n ≥ 0 and a ∈ An such that
|τ[n,m)(bm)|a
|τ[0,m)(bm)| is

bounded away from µ(Bn(a)) for all m in an infinite set E ⊆ N.
Let

K = lim sup
m→+∞
m∈E

Tm(bm).

From our hypothesis, we have µ(K) > 0 and hence that there is a µ-generic point
x in K. We have that x is in Tm(b) for all m belonging to an infinite set E′ ⊆ E.

But then from Item 1 in Proposition 6 the sequence
(

|τ[n,m)(bm)|a
|τ[0,m)(b)|

: m ∈ E′
)

is
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arbitrarily close to µ(Bn(a)), which contradicts our previous assumption. This
shows that (14) holds.

Next, we suppose that τ is (A′
n)n≥0-adapted to µ and bm ∈ A′

m for all m ≥ 0.
Then, from (12) we get lim infm→+∞ µ(Tm(bm)) > 0 and thus (14) holds by Item 2
of this proposition.

Finally, if the system (Xτ , S) is uniquely ergodic, then any point is µ-generic and
(14) holds for any sequence of letters bm in Am from Item 1 in Proposition 6. �

2.9. Toeplitz sequences as S-adic subshifts. In [GJ00, Theorem 8] it is shown
that the class of Toeplitz subshifts coincides, up to topological conjugacy, with the
class of expansive Bratteli–Vershik systems defined on diagrams with the equal path
number property. This is the starting point of the link between Toeplitz subshifts
and S-adic subshifts that is summarized in the proposition below. This will be used
throughout the article. We follow the proof in [DP22, Theorem 6.1.7].

Proposition 7. Let (X,S) be a subshift. The following are equivalent.

(1) (X,S) is a Toeplitz subshift;
(2) (X,S) is generated by a constant length, primitive, proper and recognizable

directive sequence; and
(3) (X,S) is generated by a constant length, primitive and recognizable directive

sequence with coincidences.

Proof. It is clear that Item 2 implies Item 3. We now prove that Item 3 implies
Item 1. Let τ = (τn : A∗

n+1 → A
∗
n)n≥0 be a constant length, primitive, proper,

and recognizable directive sequence. For each n ≥ 0, let kn be a coincidence of τn,
ℓn = ⌊|τ[0,n)|/2⌋, rn = |τ[0,n)| − ℓn and x a point belonging to ∩n≥0τ[0,n)([An.An]).

If we define the sequence of points xn = Skn|τ[0,n)|+ℓnx, n ≥ 0, we observe that

(xn)[−ℓn,rn) = (xn)[−ℓn+k·|τ[0,n+1)|,rn+k·|τ[0,n+1)|), k ∈ Z.

This implies that any accumulation point of the sequence (xn)n≥0 is a Toeplitz
sequence, and hence (Xτ , S) is a Toeplitz subshift.

It remains to prove that Item 1 implies Item 2.

Claim 8. Let x ∈ AZ be a Toeplitz sequence. Then there exists a nonempty alphabet
B, a constant length and positive morphism with coincidences τ : B∗ → A∗ and
a Toeplitz sequence y ∈ BZ such that x = τ(y). Moreover, the morphism τ is
recognizable on the subshift Y generated by y.

Proof. Let m ∈ N be large enough so that all letters that occur in x also occur in
x[−m,m). Define u = x[−m,0) and v = x[0,m). As x is a Toeplitz sequence, there
exists a minimal p > 2m such that

x[−m+kp,m+kp) = x[−m,m) = uv, k ∈ Z.

Define B′ be the set of words {x[kp,(k+1)p) : k ∈ Z} ⊆ A∗. Let τ : B → B′ be a
bijection, where B is an alphabet. The map τ of course defines a morphism from
B∗ to A∗.

We have that τ is positive, with coincidences and |τ | = p. It is clear that there
exists a unique point y ∈ BZ such that x = τ(y). Since x is Toeplitz, we have that y
is Toeplitz. We are left to prove that τ is recognizable on the subshift Y generated
by y.
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Consider the cylinder U = [u.v] in X and define

Perq(x
′, U) = {n ∈ Z : Sn+kq(x′) ∈ U, k ∈ Z}, x′ ∈ X, q ∈ N.

Since p is minimal we have Perq(x, U) = ∅ if q < p and Perp(x, U) 6= ∅. The set
{x′ ∈ X : Perp(x

′, U) 6= ∅} is nonempty, closed and S-invariant, hence it is equal
to X as (X,S) is minimal. From this we see that if

C = {x′ ∈ X : Perp(x
′, U) = Perp(x, U)}

then {SiC : 0 ≤ i < p} is a clopen partition of X . Finally, since (X,S) is minimal
one has C =

⋃

b∈B τ([b]), where the cylinders [b], b ∈ B, are considered in Y . This
implies that

{Skτ([b]) : b ∈ B, 0 ≤ k < p}

is a clopen partition of X , and thus τ is recognizable on (Y, S), finishing the proof
of the claim. �

By the claim, we inductively construct a sequence of alphabets (Bn)n≥0 with
B0 = A; a sequence of Toeplitz sequences (yn)n≥0 with yn ∈ B

Z
n for n ≥ 0 such

that y0 = x; and a directive sequence of morphisms τ = (τn : B∗
n+1 → B

∗
n)n≥0

which is of constant length, primitive, with coincidences and such that for all n ≥ 0
the morphism τn is recognizable on the subshift generated by yn. Since we have

yn = τ[n,N)(yN ) for all 0 ≤ n < N , we see that yn generates the subshift X
(n)
τ . In

particular, τ is recognizable and X = Xτ , which finishes the proof. �

2.10. The maximal equicontinuous topological factor.

2.10.1. Odometers. For a sequence of positive integers (pn)n≥0 such that pn divides
pn+1 for n ≥ 0, the odometer given by (pn)n≥0 is the system (Z(pn)n≥0

,+1), where

Z(pn)n≥0
= lim
←−

Z/pnZ =

{

(xn)n≥0 ∈
∏

n≥0

Z/pnZ : xn+1 ≡ xn (mod pn), n ≥ 0

}

and the map “+1” is given by

(xn)n≥0 7→ (xn + 1 (mod pn))n≥0.

If pn = pn for some p ≥ 1 and all n ≥ 0, we simply denote Z(pn)n≥0
by Zp.

Odometers are, in particular, minimal rotations on compact abelian groups.
They are equicontinuous and uniquely ergodic, where the unique ergodic measure
is the Haar measure. In particular, the measurable system given by the odometer
has discrete spectrum.

For ℓ ≥ 0 and z = (zn)n≥0 ∈ Z(pn)n≥0
we define the cylinder

[z0, z1, . . . , zℓ−1] = {(xn)n≥0 ∈ Z(pn)n≥0
: xk = zk, 0 ≤ k < ℓ}.

The Haar measure ν on (Z(pn)n≥0
,+1) satisfies

(15) ν([z0, z1, . . . , zℓ−1]) =
1

p0p1 . . . pℓ−1
.

We finally remark that the odometer is coalescent as a measure theoretical sys-
tem, that is, every measurable automorphism of the odometer is an isomorphism.
This follows since it has discrete spectrum [HP68].
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2.10.2. The maximal equicontinuous topological factor. Let τ = (τn)n≥0 be a con-
stant length, primitive, and recognizable directive sequence with coincidences. It
is a well-known fact that the maximal equicontinuous topological factor of (Xτ , S)
corresponds to the odometer (Z(|τ[0,n)|)n≥0

,+1). Indeed, this follows from Proposi-

tion 7 and [Wil84, Theorem 2.2].
The factor map πmeq : Xτ → Z(|τ[0,n)|)n≥0

can be described as follows. Let

x ∈ Xτ . By recognizability of τ , for every n ≥ 0 there exists kn(x) with 0 ≤
kn(x) < |τ[0,n)| such that x ∈ Skn(x)Bn, where Bn is the base given by (7). Then
we define

(16) πmeq(x) = (kn(x))n≥0.

It can be observed that kn+1(x) ≡ kn(x) (mod |τ[0,n)|) for x ∈ Xτ . In order to
help the reader, it is important to notice the following relation

(17) π−1
meq([z0, z1, . . . , zℓ]) = SzℓBℓ, (zn)n≥0 ∈ Z(|τ[0,n)|)n≥0

, ℓ ≥ 0.

The following lemma will be useful.

Lemma 9. Let 0 ≤ n < m and An,m be a subset of [0, |τ[n,m|). Then

ν({z ∈ Z(|τ[0,n)|)n≥0
: zm ∈ zn + |τ[0,n)|An,m}) =

|An,m|

|τ[n,m)|
.

Proof. Observe that, from (15), the set {z ∈ Z(|τ[0,n)|)n≥0
: zm ∈ zn + |τ[0,n)|An,m}

is a disjoint union of |τ[0,n)| · |An,m| cylinders of measure 1/|τ[0,m)|. We obtain

ν({z ∈ Z(|τ[0,n)|)n≥0
: zm ∈ zn + |τ[0,n)|An,m}) =

|An,m|

|τ[n,m)|
.

�

3. About unique ergodicity of S-adic subshifts of constant length

In this section we give a necessary and sufficient condition for unique ergodicity in
the specific case of S-adic subshifts generated by constant length and recognizable
directive sequences. This condition is in terms of the matrices of the directive
sequence and can be check relatively easily.

Lemma 10. Let (an,N : 0 ≤ n < N) be a doubly indexed sequence in [0, 1] that
satisfies

(18) al,n ≤ al,mam,n, l < m < n.

The following are equivalent.

(1)

lim
N→+∞

an,N = 0, for all n ≥ 0;

(2) there exists an increasing sequence (nk)k≥0 such that

lim
K→+∞

ank,nK
= 0, for all k ≥ 0; and

(3) there exists an increasing sequence (nk)k≥0 such that
∑

k≥0

ank,nk+1
< +∞.
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Proof. We first prove that Item 1 is equivalent to Item 2. It is clear that Item 1
implies Item 2. Let now n ≥ 0 and (nk)k≥0 be such that Item 2 holds. From (18),
we deduce that the sequence (an,N : N > n) is nonincreasing in N . In particular,
since it is bounded, we have limN→+∞ an,N = infN>n an,N . Then, for any integers
0 ≤ k < K such that n < nk < nK , Equation (18) yields

0 ≤ inf
N>n

an,N ≤ an,nK
≤ ank,nK

.

By letting K → +∞, we obtain Item 1.

Item 3 can be obtained from Item 2 by considering a sequence (nk)k≥0 such that
ank,nk+1

≤ 2−k for k ≥ 0. It is left to prove that Item 3 implies Item 2. Let k ≥ 0.
By using (18) and the inequality log(x) ≤ x− 1 for x ∈ [0, 1], we obtain

ank,nK
≤

∏

k≤j<K

anj ,nj+1 ≤ exp

(

∑

k≤j<K

anj ,nj+1 −K + k

)

, 0 ≤ k < K,

from which we deduce Item 2 if we let K → +∞. �

We now prove the main result of this section. Denote by |v| the sum of the
entries of a vector v.

Theorem 11. Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a constant length and recognizable

directive sequence. The following are equivalent.

(1) There exists a contraction τ
′ = (τ ′k = τ ′[nk,nk+1)

)k≥0 of τ such that the

vectors (vk)k≥0 given by

vk(a) = min
b∈Ank+1

|τ ′k(b)|a, a ∈ Ank
, k ≥ 0,

satisfy

(19)
∑

k≥0

|vk|

|τ ′k|
= +∞.

(2) The system (Xτ , S) is uniquely ergodic.

Proof. Let τ
′ = (τ ′k = τ[nk,nk+1) : A∗

nk+1
→ A∗

nk
)k≥0 be a contraction of τ and

(vk)k≥0 be the vectors such that Item 1 in Theorem 11 holds. Observe that, with
this definition of the vectors (vk)k≥0, we have

(20) Mτ ′
k
= vk1k+1 +M ′

k, k ≥ 0,

where the matrix M ′
k is nonnegative and 1k+1 is the row vector of ones in Z

Ank+1 .

Claim 12. Define the doubly indexed sequences of vectors (vk,K : 0 ≤ k < K) and
of matrices (M ′

k,K : 0 ≤ k < K) inductively by vk,k+1 = vk; M ′
k,k+1 = M ′

k for
k ≥ 0; and

vk,K+1 = |vK |vk,K +M ′
k,KvK + (|τ ′K | − |vK |)vk,K

M ′
k,K+1 = M ′

k,KM ′
K , K > k.

Then we have

(21) Mτ ′
[k,K)

= vk,K1K +M ′
k,K , 0 ≤ k < K.
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Proof. From (20) we have 1kM
′
k = (|τ ′k| − |vk|)1k+1 for all k ≥ 0. We prove the

claim by induction on K. Equation (21) holds if K = k + 1 by (20). If (21) holds,
then

Mτ ′
[k,K+1)

= (vk,K1K +M ′
k,K)(vK1K+1 +M ′

K)

= (|vK |vk,K +M ′
k,KvK + (|τ ′K | − |vK |)vk,K)1K+1 +M ′

k,KM ′
K

= vk,K+11K+1 +M ′
k,K+1,

thus proving the claim by induction. �

Observe that from the previous claim we have

1kM
′
k,K = (|τ ′[k,K)| − |vk,K |)1K

and hence

|vk,K+1| = |vK ||vk,K |+ (1kM
′
k,K)vK + (|τ ′K | − |vK |)|vk,K |

= |vK ||vk,K |+ (|τ ′[k,K)| − |vk,K |)|vK |+ (|τ ′K | − |vK |)|vk,K |

= (|τ ′K | − |vK |)|vk,K |+ |τ
′
[k,K)||vK |, 0 ≤ k < K.

After rearranging terms, we obtain

1−
|vk,K+1|

|τ ′[k,K+1)|
=

(

1−
|vk,K |

|τ ′[k,K)|

)(

1−
|vK |

|τ ′K |

)

, 0 ≤ k < K,

therefore

1−
|vk,K |

|τ ′k,K |
=

∏

k≤ℓ<K

(

1−
|vℓ|

|τ ′ℓ|

)

, 0 ≤ k < K.

Define

ak,K = 1−
|vk,K |

|τ ′k,K |
, 0 ≤ k < K.

Since Equation (19) holds, Lemma 10 applied to (ak,K : 0 ≤ k < K) gives

(22) lim
K→+∞

|vk,K |

|τ ′[k,K)|
= 1, k ≥ 0.

We now prove that Item 2 in Theorem 11 holds. It is enough to prove that
(Xτ

′ , S) is uniquely ergodic. Let µ be an invariant measure of (Xτ
′ , S) and define

the sequence of column vectors (µk)k≥0 by

µk = µ(τ ′[0,k)([a])), a ∈ Ank
, k ≥ 0.

From Corollary 5, it is enough to prove that

(23) µk = lim
K→+∞

vk,K
|τ ′[0,K)|

, k ≥ 0.

Let 0 ≤ k < K. By recognizability of τ
′, we have that |µk| = |τ ′[0,k)|

−1 and

µk = Mτ ′
[k,K)

µK . Hence, from (21) we deduce

µk =
vk,K
|τ ′[0,K)|

+M ′
k,KµK .

If we multiply both sides by |τ ′[0,k)| and sum over all letters a ∈ Ank
, we obtain

|vk,K |

|τ ′[k,K)|
+ |τ ′[0,k)||M

′
k,KµK | = 1.
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From (22), we have |M ′
k,KµK | → 0 as K → +∞ and, since the matrix M ′

k,K is

nonnegative, we finally deduce (23).

Now assume that Item 2 in Theorem 11 holds. Define n0 = 0 and denote by
µ the unique invariant probability measure of (Xτ , S). From Proposition 6 we
inductively construct an increasing sequence (nk)k≥0 such that

(24)
minb∈Ank+1

|τ[nk,nk+1)(b)|a

|τ[nk,nk+1)|
≥

1

2
|τ[0,nk)|µnk

(a), a ∈ Ank
, k ≥ 0

Define the contraction τ
′ = (τ ′k = τ ′[nk,nk+1)

)k≥0 of τ . By summing over all letters

a ∈ Ank
in (24), we deduce that (19) holds for the contraction τ

′. This shows that
Item 2 implies Item 1 in Theorem 11 and finishes the proof. �

The following corollary shows that the conditions stated in Theorem 1 implies
the unique ergodicity.

Corollary 13. Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a constant length and recognizable

directive sequence. If there exists a contraction τ
′ = (τ ′k)k≥0 of τ such that

(25)
∑

k≥0

|coinc(τ ′k)|

|τ ′k|
= +∞,

then the system (Xτ , S) is uniquely ergodic.

Let us make some observations about Theorem 11. There are in the literature
other such conditions implying unique ergodicity. Let mn and Mn be the smallest
and greatest entry of Mτn , respectively. It comes from [Sen81] that if

∑

n≥0

mn

Mn

= +∞

then (Xτ , S) is uniquely ergodic. This implies the well-known fact that, when
dealing with square matrices, not necessarily in the constant length case, if a matrix
with positive coefficients occurs infinitely many times in the sequence (Mτn : n ≥ 0),
then (Xτ , S) is uniquely ergodic. This criteria for unique ergodicity can be tracked
down to [Fur60].

For the constant length case, we do not need all coefficients to be positive.

Corollary 14. Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a constant length and recognizable

directive sequence. Suppose that there exists a morphism τ : A∗ → B∗ which
satisfies:

(1) There exists a letter b in B which occurs in τ(a) for every a ∈ A; and
(2) We have τn = τ for infinitely many values of n.

Then (Xτ , S) is uniquely ergodic.

Our result also implies unique ergodicity when matrices are upper or lower trian-
gular with positive coefficients (in the corresponding triangular and diagonal parts
of the matrices) and one of each type occurring infinitely many times.

Theorem 11 covers more situations in the constant length case than classical
criteria. For example, one cannot deduce from the Seneta criteria the unique er-
godicity when

Mτn =

(

1 n2

2n2 − 1 n2

)

, n ≥ 0
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whereas it is uniquely ergodic as |vn| = 1+ n2. Moreover, in our framework we do
not require (|An| : n ≥ 0) to be bounded, which is a constraint in [Sen81].

Let us mention that when

Mτn =

(

an 1
1 an

)

, where an > 0

it is shown in [FFT09] that (Xτ , S) is uniquely ergodic if and only if
∑

n 1/an
diverges.

We finally remark in this section that there exist other result about ergodic
measures in the context of constant length directive sequences. However, these
results go in the direction of characterizing when the system possesses exactly k
ergodic measures, where k is the rank of every composition matrix in the directive
sequence [ABKK17, Theorem 3.7].

4. Preliminary definitions and results

In this section we include all main preliminary lemmas that allow us to deduce
our main results in the next section.

Let τ = (τn : A∗
n+1 → A

∗
n)n≥0 be a constant length and recognizable directive

sequence and let µ be an ergodic measure of (Xτ , S). For each n ≥ 0, let A′
n ⊆ An

be a nonempty alphabet. For convenience, we set

coinc′(τ[n,N)) = coincA′
N
(τ[n,N)), N > n

where coincA′
N
(τ[n,N)) is the set of coincidences of the morphism τ[n,N) relatively

to A′
N introduced in Section 2.4.

From now on, we suppose that µ is (A′
n)n≥0-adapted to µ. We recall the def-

inition of the sequence of partitions (Pn)n≥0 given in Section 2.6 as well as the
definition of the sets B′

n, T ′
n, T ′

≥n for n ≥ 0 and T ′ given in Section 2.7.

In the following we aim to control the set (an their measure) of z ∈ Z(|τ[0,n)|)n≥0

having a unique πmeq-preimage. We set

I ′ = {z ∈ Z(|τ[0,n)|)n≥0
: |π−1

meq({z}) ∩ T
′| ≤ 1} and

I ′m = {z ∈ Z(|τ[0,n)|)n≥0
: π−1

meq({z}) ∩ T
′
≥m is contained in some atom of Pm}

for each m ≥ 0.
We recall that ν is the Haar measure on Z(|τ[0,n)|)n≥0

.

Lemma 15. The set I ′ is equal to
⋂

n≥0 I
′
n up to a set of ν-measure zero.

Proof. Observe that the inclusion I ′ ⊆
⋂

n≥0 I
′
n follows directly from the defini-

tions. Thus, it is enough to prove that

(26) ν(∩n≥0I
′
n) ≤ ν(I ′).

We observe that if z belongs to I ′n for every n ≥ 0, then all points in π−1
meq({z})∩T

′

share the same (Pn)n≥0-address. Therefore, by Theorem 4 we deduce

µ(π−1
meq(∩n≥0I

′
n)) ≤ µ(π−1

meq(I
′)),

which implies (26). �

The next lemma allows us to interpret coincidences in topological terms. The
proof is left to the reader since it is straightforward from the definitions.
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Lemma 16. Let 0 ≤ n < m. Then k belongs to coinc′(τ[n,m)) if and only if there

exists a letter a ∈ An such that Sk|τ[0,n)|B′
m ⊆ Bn(a).

The next lemma is a first step to control the measure of the set of points having
a unique πmeq-preimage.

Lemma 17. We have that

ν(I ′n) ≥ sup
m>n

|coinc′(τ[n,m))|

|τ[n,m)|
, n ≥ 0.

Proof. Let n ≥ 0 and define the sets

Dn,m = {z ∈ Z(|τ[0,n)|)n≥0
: zm ∈ zn + |τ[0,n)|coinc

′(τ[n,m))}, m > n.

We first prove that Dn,m is contained in I ′n for all m > n. Indeed, if z ∈ Dn,m

from Lemma 16 there exists a letter a ∈ An such that

SzmB′
m ⊆ SznBn(a)

Thus if x is in π−1
meq({z})∩T

′
≥n then x is in the atom SznBn(a) and thus z is in I ′n.

From Lemma 9, we obtain

ν(I ′n) ≥ sup
m>n

ν(Dn,m) = sup
m>n

|coinc′(τ[n,m))|

|τ[n,m)|
.

�

As it is more easy to control the positions that are not coincidences, we give the
following definition. For 0 ≤ n < m and letters a and b in An we define

Cn,m(a, b) = {k ∈ [0, |τ[n,m)|) : S
k|τ[0,n)|B′

m ∩Bn(c) 6= ∅, ∀c ∈ {a, b}}.

Observe that, since the partition Pm is finer than Pn, for all k in Cn,m(a, b) and c
in {a, b} there exists a letter c′ in A′

m such that

(27) Sk|τ[0,n)|Bm(c′) ⊆ Bn(c).

The following lemma will allow us define two disjoint sets in Xτ with the same
projection under πmeq and whose ν-measure is controlled in terms of coincidences.

Lemma 18. Let n ≥ 0. Then there exist distinct letters a and b in An and an
increasing sequence (Nℓ)ℓ≥0 such that

(28)
|Cn,Nℓ

(a, b)|

|τ[n,Nℓ)|
≥

1

2|An|2

(

1− lim sup
ℓ→+∞

|coinc′(τ[n,Nℓ))|

|τ[n,Nℓ)|

)

, ℓ ≥ 0.

If in addition the directive sequence τ is (A′
n)n≥0-adapted to µ, then (Nℓ)ℓ≥0 can

be defined so that it satisfies

(29)
|τ[Nℓ,Nℓ+1)(c)|d

|τ[Nℓ,Nℓ+1)|
≤

1

2ℓ|ANℓ
|
+ µ(TNℓ

(d)), c ∈ A′
Nℓ+1

, d ∈ ANℓ
, ℓ ≥ 0.

Proof. Let n ≥ 0 and n0 ≥ n such that

(30)
|[0, |τ[n,N)|) \ coinc

′(τ[n,N))|

|τ[n,N)|
≥

1

2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

, N > n0.

By definition, for every N > n0 and k ∈ [0, |τ[n,N)|) \ coinc
′(τ[n,N)) there exist

distinct letters aN,k and bN,k in An and letters a′N,k and b′N,k in A′
N such that
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the k-th letter of τ[n,N)(a
′
N,k) (resp. of τ[n,N)(b

′
N,k)) is aN,k (resp. bN,k). This

translates into

Sk|τ[0,n)|B′
N ∩Bn(c) 6= ∅, ∀c ∈ {aN,k, bN,k},

or k ∈ Cn,N (aN,k, bN,k). Now, for each N > n0 we use the Pigeonhole principle to
obtain distinct letters aN and bN in An and a subset C′

n,N of Cn,N (aN , bN ) with

aN,k = aN , bN,k = bN , k ∈ C′
n,N ,

(31) |C′
n,N | ≥ |[0, |τ[n,N)|) \ coinc

′(τ[n,N))|/|An|
2.

Moreover, we can find an increasing sequence (Nℓ)ℓ≥0 with N0 > n0 and distinct
letters a, b ∈ An such that a = aNℓ

and b = bNℓ
for all ℓ ≥ 0. Therefore the sets

Cn,Nℓ
(a, b) satisfy (28) by (30) and (31).

If τ is (A′
n)n≥0-adapted to µ, from Proposition 6 we can construct (Nℓ)ℓ≥0

inductively so that it additionally satisfies (29). �

The next lemma provides two disjoint sets that, roughly speaking, separate the
fibers and whose measures can be controlled by the density of coincidences. It is
the main lemma of this section. Its proof is subdivided in some technical claims.

Lemma 19. Let n ≥ 0. There exist sets En and E′
n in Xτ such that

(1) En and E′
n are disjoint;

(2) πmeq(En) = πmeq(E
′
n); and

ν(πmeq(En)) = ν(πmeq(E
′
n)) ≥

1

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

.

If in addition the directive sequence τ is (A′
n)n≥0-adapted to µ for the constant

δ > 0, then

(1) µ(En) and µ(E′
n) are greater than

δ

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

; and

(2) πmeq(En ∩ U) = πmeq(E
′
n ∩ U) (mod ν) for any Borel set U in Xτ such

that µ(U) = 1.

Proof. From Lemma 18, there exist distinct letters a and b in An and an increasing
sequence (Nℓ)ℓ≥0 such that (28) holds. For ℓ ≥ 0 define Cn,Nℓ

= Cn,Nℓ
(a, b) and

observe that if k is in Cn,Nℓ
and c is in {a, b}, then (27) implies that there exists a

nonempty set An,Nℓ,k(c) ⊆ A
′
Nℓ

such that

Sk|τ[0,n)|BNℓ
(c′) ⊆ Bn(c), c′ ∈ An,Nℓ,k(c).
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Let K ⊆ Xτ be a compact set. For all ℓ ≥ 0 we set

Fn,Nℓ
= {z ∈ Z(|τ[0,n)|)n≥0

: zNℓ
∈ zn + |τ[0,n)|Cn,Nℓ

}; Fn,∞ = lim sup
ℓ→+∞

Fn,Nℓ

Fn,Nℓ,K(c) = {z ∈ Fn,Nℓ
: SzNℓB′

Nℓ
∩ SznBn(c) ∩K 6= ∅}; c ∈ {a, b}

Fn,∞,K = lim sup
ℓ→+∞

Fn,Nℓ,K(a);

F ′
n,∞,K = lim sup

ℓ→+∞
Fn,Nℓ,K(b)

En,Nℓ
(c) =

⋃

k∈Cn,Nℓ

⋃

c′∈An,Nℓ,k
(c)

0≤j<|τ[0,n)|

Sk|τ[0,n)|+jBNℓ
(c′); c ∈ {a, b}

En = lim sup
ℓ→+∞

En,Nℓ
(a);

E′
n = lim sup

ℓ→+∞
En,Nℓ

(b).

Observe that, from the definition of the sets Cn,Nℓ
, we have

Fn,∞,Xτ
= F ′

n,∞,Xτ

= Fn,∞

and that

En ⊆ Tn(a) and E′
n ⊆ Tn(b).

In particular, En and E′
n are disjoint.

Claim 20. For all compact set K ⊆ Xτ we have

πmeq(En ∩K) = Fn,∞,K and πmeq(E
′
n ∩K) = F ′

n,∞,K .

Proof. By symmetry, it is enough to show that πmeq(En ∩K) = Fn,∞,K . Observe
that if x belongs to En,Nℓ

(a)∩K then πmeq(x) is in Fn,Nℓ,K(a); hence we have the
inclusion

πmeq(En ∩K) ⊆ Fn,∞,K .

Suppose now that z belongs to Fn,∞,K . Then, there is an infinite set Λ ⊂ N such
that z belongs to Fn,Nℓ

and a point xℓ in SzNℓB′
Nℓ
∩ SznBn(a) ∩K for all ℓ ∈ Λ.

Since Xτ is compact, we can find an infinite set Λ′ ⊆ Λ and x ∈ Xτ such that
xℓ → x as ℓ → +∞ and ℓ ∈ Λ′. Then z = πmeq(x) and x ∈ En ∩ K since K is
compact, which shows that Fn,∞,K ⊆ πmeq(En ∩K). �

Claim 21. We have πmeq(En) = πmeq(E
′
n) = Fn,∞ and

ν(Fn,∞) ≥
1

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

.

Proof. If we put K = Xτ in Claim 20 we obtain πmeq(En) = πmeq(E
′
n) = Fn,∞.

On the other hand, from Lemma 9 and (28) we obtain

ν(Fn,∞) ≥ lim sup
ℓ→+∞

|Cn,Nℓ
|

|τ[n,Nℓ)|
≥

1

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

.

�

This proves the first part of Lemma 19.

We henceforth assume that τ is (A′
n)n≥0-adapted to µ for the constant δ > 0.
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Claim 22. µ(En) and µ(E′
n) are at least

δ

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

.

Proof. Observe that, for each ℓ ≥ 0 and c ∈ {a, b}, the sets

{Sk|τ[0,n)|+jBNℓ
(c′) : k ∈ Cn,Nℓ

, 0 ≤ j < |τ[0,n)|, c′ ∈ An,Nℓ,k(c)}

are disjoint. Since An,Nℓ,k(c) ⊆ A
′
Nℓ

, from (12) we have

min
c′∈An,Nℓ,k

(c)
µ(BNℓ

(c′)) ≥ δ/|τ[0,Nℓ)|.

Thus we obtain

µ(En,Nℓ
(c)) ≥ |Cn,Nℓ

| · |τ[0,n)| min
c′∈An,Nℓ,k

(c)
µ(BNℓ

(c′)) ≥ δ
|Cn,Nℓ

|

|τ[n,Nℓ)|

and (28) implies

µ

(

lim sup
ℓ→+∞

En,Nℓ
(c)

)

≥
δ

2|An|2

(

1− lim sup
N→+∞

|coinc′(τ[n,N))|

|τ[n,N)|

)

.

�

Claim 23. For all compact set K ⊆ Xτ we have

ν

(

lim sup
ℓ→+∞

Fn,Nℓ,K(c)

)

≥ lim sup
ℓ→+∞

ν(Fn,Nℓ
)−

1

δ
µ(Xτ \K), c ∈ {a, b}.

Proof. Let c ∈ {a, b} and ℓ ≥ 0. We define Rn,Nℓ,K(c) as the set of coordinates zNℓ

in [0, |τ[0,Nℓ)|) where z ranges over Fn,Nℓ
\ Fn,Nℓ,K(c).

From (15) we have

ν(Fn,Nℓ
\ Fn,Nℓ,K(c)) ≤ ν

(

⋃

r∈Rn,Nℓ,K
(c){z ∈ Z(|τ[0,n)|)n≥0

: zNℓ
= r}

)

(32)

≤
|Rn,Nℓ,K(c)|

|τ[0,Nℓ)|
.

Observe that if z and z′, with zNl
6= z′Nl

, belong to Fn,Nℓ
\ Fn,Nℓ,K(c), then

SzNℓB′
Nℓ
∩SznBn(c) and Sz′

NℓB′
Nℓ
∩Sz′

nBn(c) are disjoint and contained in Xτ \K.
Hence,

|Rn,Nℓ,K(c)| min
z∈Fn,Nℓ

\Fn,Nℓ,K
(c)

µ(SzNℓB′
Nℓ
∩ SznBn(c)) ≤ µ(Xτ \K).

Now, if z belongs to Fn,Nℓ
\ Fn,Nℓ,K(c), then from (27) we have that SzNℓB′

Nℓ
∩

SznBn(c) contains SzNℓBNℓ
(c′) for some c′ ∈ A′

Nℓ
. Hence, by (12),

min
z∈Fn,Nℓ

\Fn,Nℓ,K
(c)

µ(SzNℓB′
Nℓ
∩ SznBn(c)) ≥ min

c′∈A′
Nℓ

µ(BNℓ
(c′)) ≥

δ

|τ[0,Nℓ)|
.

Combining this with (32) yields

ν(Fn,Nℓ
\ Fn,Nℓ,K(c)) ≤

1

δ
µ(Xτ \K),

and then we finally obtain

ν

(

lim sup
ℓ→+∞

Fn,Nℓ,K(c)

)

≥ lim sup
ℓ→+∞

ν(Fn,Nℓ,K(c)) ≥ lim sup
ℓ→+∞

ν(Fn,Nℓ
)−

1

δ
µ(Xτ \K).
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�

Claim 24. We have

ν(Fn,∞) = lim sup
ℓ→+∞

ν(Fn,Nℓ
).

Proof. Define

Gℓ = {k ∈ [0, |τ[Nℓ,Nℓ+1)|) : S
k|τ[0,Nℓ)

|B′
Nℓ+1

⊆ B′
Nℓ
}

Hℓ = {z ∈ Z(|τ[0,n)|)n≥0
: SzNℓ+1B′

Nℓ+1
⊆ SzNℓB′

Nℓ
}, ℓ ≥ 0

Hℓ∗,∞ =
⋂

ℓ≥ℓ∗

Hℓ, ℓ∗ ≥ 0.

Observe that k belongs to Gℓ if and only if for all c in A′
Nℓ+1

the k-th letter of

τ[Nℓ,Nℓ+1)(c) is in A′
Nℓ

. Hence

|[0, |τ[Nℓ,Nℓ+1)|) \Gℓ| ≤
∑

c∈A′
Nℓ+1

∑

d∈ANℓ
\A′

Nℓ

|τ[Nℓ,Nℓ+1)(c)|d.

From (29) we obtain

|[0, |τ[Nℓ,Nℓ+1)|) \Gℓ|

|τ[Nℓ,Nℓ+1)|
≤

∑

c∈A′
Nℓ+1

∑

d∈ANℓ
\A′

Nℓ

|τ[Nℓ,Nℓ+1)(c)|d

|τ[Nℓ,Nℓ+1)|

≤ sup
n≥0
|A′

n|

(

1

2ℓ
+ µ(Xτ \ T

′
Nℓ

)

)

.

On the other hand, one has z ∈ Hℓ if and only if zNℓ+1
∈ zNℓ

+ |τ[0,Nℓ)|Gℓ. From
Lemma 9 we have

ν(Hℓ) = |Gℓ|/|τ[Nℓ,Nℓ+1)|, ℓ ≥ 0.

Therefore, for ℓ∗ ≥ 0 one has

ν

(

Xτ \
⋂

ℓ≥ℓ∗

Hℓ

)

≤
∑

ℓ≥ℓ∗

sup
n≥0
|A′

n|

(

1

2ℓ
+ µ(Xτ \ T

′
Nℓ

)

)

.

Recall that by (12) we have supn≥0 |A
′
n| ≤ 1/δ, hence by (11)

(33) lim
ℓ∗→+∞

ν

(

Xτ \
⋂

ℓ≥ℓ∗

Hℓ

)

= 0.

Now let ℓ∗ ≤ ℓ < ℓ′. Observe that if z belongs to Fn,Nℓ′
∩Hℓ∗,∞, then for c in

{a, b} we have SzNℓB′
Nℓ
∩ SznBn(c) ⊆ SzN

ℓ′ B′
Nℓ′
∩ SznBn(c), which is nonempty.

We deduce that z belongs to Fn,Nℓ
and so

Fn,Nℓ′
∩Hℓ∗,∞ ⊆ Fn,Nℓ

∩Hℓ∗,∞,

i.e., the sequence of sets (Fn,Nℓ
∩Hℓ∗,∞)ℓ≥ℓ∗ is decreasing. We obtain

ν

(

lim sup
ℓ→+∞

Fn,Nℓ

)

=ν

(

lim sup
ℓ→+∞

Fn,Nℓ
∩Hℓ∗,∞

)

+ ν

(

lim sup
ℓ→+∞

Fn,Nℓ
∩ (Xτ \Hℓ∗,∞)

)

≤ lim sup
ℓ→+∞

ν(Fn,Nℓ
) + ν(Xτ \Hℓ∗,∞).
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If we let ℓ∗ → +∞, from (33) we deduce

ν(Fn,∞) = lim sup
ℓ→+∞

ν(Fn,Nℓ
),

which proves the claim. �

Claim 25. We have

πmeq(En ∩ U) = πmeq(E
′
n ∩ U) (mod ν)

for any Borel set U ⊂ Xτ such that µ(U) = 1.

Proof. By symmetry, it is enough to prove that πmeq(En ∩ U) = Fn,∞ (mod ν).
Since πmeq(En) = Fn,∞, we have the inclusion πmeq(En ∩ U) ⊆ Fn,∞. It remains
to prove that ν(πmeq(En ∩ U)) ≥ ν(Fn,∞). Let ε > 0. Since Xτ is compact, µ is a
regular measure and there exists a compact set Kε ⊆ U with µ(Xτ \Kε) < ε.

From Claim 20 we have

πmeq(En ∩Kε) = Fn,∞,Kε

and from Claim 23 and Claim 24 we deduce

ν(Fn,∞,Kε
) ≥ lim sup

ℓ→+∞
ν(Fn,Nℓ

)−
ε

δ
≥ ν(Fn,∞)−

ε

δ
.

Thus, since Kε is a subset of U , one has

ν(πmeq(En ∩ U)) ≥ ν(Fn,∞,Kε
) ≥ ν(Fn,∞)−

ε

δ
.

If we let ε go to 0, we deduce ν(πmeq(En ∩ U)) ≥ ν(Fn,∞), which finishes the
proof. �

The achieves the proof of the Lemma 19. �

5. Proof of the main results

We will freely use the terminology introduced in Section 4.

5.1. Proof of Theorem 1.

Proof. From Proposition 7 and recognizability of τ it is easy to see that Item 2,
Item 3, Item 4 and Item 5 in Theorem 1 are equivalent.

We define

an,N = 1−
|coinc(τ[n,N))|

|τ[n,N)|
, 0 ≤ n < N.

From Lemma 3 we deduce that inequality (18) holds. Hence, we obtain that Item 4
and Item 6 are equivalent.

It remains to show that Item 1 and Item 4. We set A′
n = An for each n ≥ 0.

Observe that, with this choice, the directive sequence τ is (A′
n)n≥0-weakly-adapted

to any invariant probability measure µ of (Xτ , S). In this case, we have

I ′ = {z ∈ Z(|τ[0,n)|)n≥0
: |π−1

meq({z})| = 1}.

Suppose that Item 1 holds. By contradiction, if Item 4 does not hold, there exists
n ≥ 0 such that

lim sup
N→+∞

|coinc(τ[n,N))|

|τ[n,N)|
< 1.

Lemma 19 ensures the existence of disjoints sets En and E′
n in Xτ such that

ν(πmeq(En)) > 0 and if z ∈ πmeq(En), then π−1
meq({z}) ∩ En 6= ∅ and π−1

meq({z}) ∩
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E′
n 6= ∅. Thus Z(|τ[0,n)|)n≥0

\ I ′ contains πmeq(En), which contradicts the fact that

ν(I ′) = 1.

Now assume that Item 4 holds. Then, Lemma 15 and Lemma 17 imply that
ν(I ′) = 1. This shows that Item 1 holds and finishes the proof. �

5.2. Proof of Theorem 2.

Proof. Suppose that Item 1 in Theorem 2 holds. This implies that there exists a
Borel subset U of Xτ and a Borel subset V of Z(|τ[0,n)|)n≥0

such that πmeq : U → V

is a bijection and µ(U) = ν(V ) = 1.
By contradiction, if Item 2 does not hold, then there exists n ≥ 0 such that

lim sup
N→+∞

|coincA′
N
(τ[n,N))|

|τ[n,N)|
< 1.

Lemma 19 then ensures the existence of disjoints sets En and E′
n in Xτ such that

µ(En) > 0, µ(E′
n) > 0 and

πmeq(En ∩ U) = πmeq(E
′
n ∩ U) (mod ν).

This implies, as πmeq : U → V is a bijection, that En∩U = E′
n∩U (mod µ), which

contradicts the fact that En and E′
n are disjoint and of positive measure.

Now assume that Item 2 holds. Define

Xµ = π−1
meq(I

′) ∩ T ′.

From Lemma 15, Lemma 17 and (13), we have µ(Xµ) = 1 and ν(πmeq(Xµ)) = 1.
On the other hand, the definition of Xµ implies that πmeq : Xµ → πmeq(Xµ) is a
bijection. This shows that Item 1 holds and finishes the proof. �

Remark 26. Let us observe that when τ is of alphabet rank two, then it follows
from Lemma 3 and Item 6 in Theorem 1 that (Xτ , S) is a regular extension of its
maximal equicontinuous topological factor if and only if

∑

n≥0

|coinc(τn)|

|τn|
= +∞.

Indeed, it follows from Lemma 3 that if τ ′ = (τ ′k)k≥0 is a contraction of τ then

∑

k≥0

|coinc(τ ′k)|

|τ ′k|
≤
∑

n≥0

|coinc(τn)|

|τn|
.

6. Examples and applications

6.1. Dekking’s theorem revisited. A substitution is a morphism σ : A∗ → A∗

that is nonerasing. It naturally defines a directive sequence τ = (σ, σ, . . .) which is
of finite alphabet rank and which generates a (possibly empty) substitution subshift
(Xσ, S).

When σ is primitive (that is, the sequence σ is primitive) the subshift (Xσ, S)
is minimal, has a unique ergodic measure µ [Que87, Chapter V], Aµ = A and σ is
recognizable [Mos92, Mos96].

Let σ : A∗ → A∗ be a constant length and primitive substitution. We say σ
is pure if its maximal equicontinuous topological factor is the odometer (Z|σ|,+1).
We say σ admits a coincidence if there exists m ≥ 1 such that coinc(σm) 6= ∅, i.e.,
if the directive sequence σ = (σ, σ, . . .) has coincidences.
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As a consequence of Theorem 1 and Theorem 2, we recover the following result.

Corollary 27 ([Dek78]). The system (Xσ, S, µ) where σ is a pure substitution has
discrete spectrum if and only if σ admits a coincidence.

Proof. Suppose that σ is pure and admits a coincidence. Let m ≥ 1 be such that
coinc(σm) 6= ∅. From Equation (4) we deduce

1−
|coinc(σmn)|

|σ|mn
≤

(

1−
|coinc(σm)|

|σ|m

)n

→ 0 as n→ +∞

which implies by Theorem 1 that (Xσ, S, µ) has discrete spectrum.
Now suppose that (Xσ, S, µ) has discrete spectrum. Every measurable eigenvalue

for the system (Xσ, S, µ) is necessarily continuous [Hos86]. This implies, since
σ is pure, that there exists a measure theoretical isomorphism π : (Xσ, S, µ) →
(Z|σ|,+1, ν). As (Z|σ|,+1, ν) is coalescent (see Section 2.10), the factor map πmeq

is a measure theoretical isomorphism. Thanks to Theorem 2 and the fact that
Aµ = A, we deduce

|coinc(σn)|

|σn|
→ 1 as n→ +∞

and hence σ has coincidences, finishing the proof. �

We remark that the previous proof shows that for primitive, pure substitutions σ
the three hypothesis (Xσ, S) is a regular extension of (Zσ ,+1); πmeq : (Xσ, S, µ)→
(Zσ,+1, ν) is a measure theoretical isomorphism; and (Xσ, S, µ) has discrete spec-
trum are all equivalent.

6.2. Example 1. Rank-one transformations have been studied extensively in er-
godic theory since the apparition of the first examples in the ’60s. In order to study
these systems from the topological and symbolic dynamics perspective, rank-one
subshifts have been introduced. We refer to [Fer96, Fer97] for a more extensive
discussion on these subshifts. Minimal rank-one subshifts are studied from the S-
adic perspective in [AD23], where the authors prefer to call them Ferenczi subshifts.
In [AD23, Section 4.3] it is shown that a minimal Ferenczi subshift possesses an
induced system that is (conjugate to) a Toeplitz subshift generated by the constant
length directive sequence τ = (τn : A∗

n+1 → A
∗
n)n≥0 which have the form

(34) τn(a) = LnaRn, a ∈ An+1

for some nonempty words Ln, Rn in A∗
n. In particular, from (34) we immediately

deduce
|coinc(τn)|

|τn|
≥

2

3
, n ≥ 0

and hence from Item 6 in Theorem 1 we obtain that this induced system is a
regular extension of its maximal equicontinuous topological factor. This improves
the remark made in [AD23] saying that these systems are mean equicontinuous (we
refer to [GRJY21] for the definition and details about this notion).

6.3. Example 2. Let A = {a, b}, f : N→ N a nonnegative function such that for
some pair of constants s > 1 and c > 0 we have f(n) ≥ cns for n ≥ 0 and consider
the directive sequence τ = (τn : A∗ → A∗)n≥0 such that for all n ≥ 0 the morphism
τn : A∗ → A∗ is defined by

a 7→ af(n)ba, b 7→ bf(n)aa.
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Observe that τ is a constant length primitive directive sequence with coinci-
dences. Moreover, the sequence τ is recognizable since the composition matrix of
the morphism τn for each n ≥ 0 is

Mτn =

(

f(n) + 1 2
1 f(n)

)

which is invertible [BSTY19, Theorem 4.6]. Thus (Xτ , S) is a Toeplitz subshift.
From Theorem 1 we have that (Xτ , S) is not a regular extension of its maximal

equicontinuous topological factor. Indeed, since τ is of alphabet rank two, from
Remark 26 we have

∑

n≥0

|coinc(τn)|

|τn|
=
∑

n≥0

1

f(n) + 2
< +∞

However, the hypothesis on f implies that (Xτ , S) has two ergodic measures µa

and µb [ABKK17, Proposition 3.1]. We set

Aµa
= {a} and Aµb

= {b}.

We see that τ is (Aµa
)-adapted to µa and (Aµb

)-adapted to µb [BKMS13, The-
orem 3.3]. From Theorem 2 we conclude that πmeq defines a measure theoretical
isomorphism to the maximal equicontinuous topological factor for both (Xτ , S, µa)
and (Xτ , S, µb).

6.4. Example 3. Let A = {a, b, c}, f : N → N a nonnegative function such that
for some pair of constants s > 1 and c > 0 we have f(n) ≥ cns for n ≥ 0 and
consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such that for all n ≥ 0 the
morphism τn : A∗ → A∗ is defined by

a 7→ (ab)f(n)+1ac

b 7→ (ab)f(n)+1bc

c 7→ c(ab)f(n)ccc.

Observe that τ is a constant length primitive directive sequence with coinci-
dences. Moreover, the sequence τ is recognizable since the composition matrix of
the morphism τn for each n ≥ 0 is

(35) Mτn =





f(n) + 2 f(n) + 1 f(n)
f(n) + 1 f(n) + 2 f(n)

1 1 4





which is invertible [BSTY19, Theorem 4.6]. Thus (Xτ , S) is a Toeplitz subshift.
From Theorem 1 we have that (Xτ , S) is not a regular extension of its maximal

equicontinuous topological factor. Indeed, by contradiction assume that

1−
|coinc(τ[0,N))|

|τ[0,N)|
→ 0 as N → +∞.

By induction, it is easy to see that

1−
|coinc(τ[0,N+1))|

|τ[0,N+1)|
≥

(

1−
1

2f(N) + 4

)(

1−
|coinc(τ[0,N))|

|τ[0,N)|

)

, N ≥ 1
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and hence

1−
|coinc(τ[0,N))|

|τ[0,N)|
≥

N−1
∏

k=1

(

1−
1

2f(k) + 4

)(

1−
|coinc(τ0)|

|τ0|

)

but it is standard to check that, under the hypothesis on f , the infinite product
∏∞

k=1

(

1− 1
2f(k)+4

)

does not converge to 0. This contradiction shows that (Xτ , S)

is not a regular extension of its maximal equicontinuous topological factor.
On the other hand, from (35) the vectors (vn)n≥0 in the statement of Theorem 11

(for the trivial contraction of τ ) satisfy

∑

n≥0

|vn|

|τn|
=
∑

n≥0

2f(n) + 1

2f(n) + 4
= +∞

which implies that the system (Xτ , S) is uniquely ergodic. Denote by µ the unique
invariant probability measure and let Aµ = {a, b}. We claim that τ is (Aµ)-adapted
to µ. Indeed, from (9) and (10) we have

µ(Tn(a)) = µn(a)|τ[0,n)| = |τ[0,n)|
∑

ℓ

Mτn(a, ℓ)µn+1(ℓ) ≥ f(n)|τ[0,n)|
∑

ℓ

µn+1(ℓ)

= f(n)|τ[0,n)|
∑

ℓ

µ(Tn+1(ℓ))

|τ[0,n+1)|
=

f(n)

2f(n) + 4
≥

1

6
.

A similar computation shows µ(Tn(b)) ≥ 1/6. On the other hand, we have
∑

n≥0

µ(Tn(c)) =
∑

n≥0

µn(c)|τ[0,n)| =
∑

n≥0

|τ[0,n)|
∑

ℓ

Mτn(a, ℓ)µn+1(ℓ)

≤
∑

n≥0

4|τ[0,n)|
∑

ℓ

µn+1(ℓ) =
∑

n≥0

4|τ[0,n)|
∑

ℓ

µ(Tn+1(ℓ))

|τ[0,n+1)|

≤
∑

n≥0

4

2f(n) + 4
< +∞

and thus conditions (11) and (12) are satisfied.
Finally, for all n ≥ 0 we have

lim
N→+∞

|coincµ(τ[n,N))|

|τ[n,N)|
= 1.

Indeed, it is easy to check that

1−
|coincµ(τ[n,N+1))|

|τ[n,N+1)|
≥

1

2

(

1−
|coinc(τ[n,N))|

|τ[n,N)|

)

, N ≥ n

and hence

1−
|coinc(τ[n,N))|

|τ[n,N)|
=

1

2N−n−1

(

1−
|coinc(τn)|

|τn|

)

→ 0 as N → +∞.

From Theorem 2 we conclude that πmeq defines a measure theoretical isomorphism
between (Xτ , S, µ) and its maximal equicontinuous topological factor.
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6.5. Example 4. Let A = {a, b, c}, m : N→ N the function such that 2m(n)+3 =
3n for all n ≥ 0 and consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such
that for all n ≥ 0 the morphism τn : A∗ → A∗ is defined by

a 7→ (ab)m(n)abc

b 7→ a(ab)m(n)ac

c 7→ (ab)m(n)cbc.

Observe that τ is a constant length and primitive directive sequence with coin-
cidences. Moreover, the sequence τ is recognizable since the composition matrix of
the morphism τn for each n ≥ 0 is

Mτn =





m(n) + 1 m(n) + 2 m(n)
m(n) + 1 m(n) m(n) + 1

1 1 2





which is invertible [BSTY19, Theorem 4.6]. Thus (Xτ , S) is a Toeplitz subshift with
maximal equicontinuous topological factor (Z3,+1). Moreover, from Theorem 11
it has a unique ergodic measure µ. Nevertheless πmeq is not a measure theoretical
isomorphism but (Xτ , S, µ) has discrete spectrum. Indeed, an easy computation
similar to the previous examples which is left to the reader shows that for Aµ =
{a, b} we have τ is (Aµ)-adapted to µ and

1−
|coincµ(τ[0,N))|

|τ[0,N)|
=

N−1
∏

k=1

(

1−
2

3k

)(

1−
|coincµ(τ0)|

|τ0|

)

,

which does not converge to 0 as N → +∞ and from Theorem 2 we obtain that
πmeq is not a measure theoretical isomorphism.

Let us show it has discrete spectrum. Let P be the subset of Xτ given by

P = lim inf
n→+∞

(Tn(a) ∪ Tn(b)).

The following arguments mainly come from [BDM10]. The Borel–Cantelli lemma
implies that µ(P ) = 1. For n ≥ 0 define

fn(x) =

{

0 if x ∈ SjBn(a), where 0 ≤ j < |τ[0,n)| is even

1 if x ∈ SjBn(b) ∪ SjBn(c), where 0 ≤ j < |τ[0,n)| is odd.

Let An = {x ∈ Xτ : fn(x) 6= fn+1(x)}. A quick computation by cases shows
that

An ⊆

(

⋃

0≤j<|τ[0,n)|

SjBn+1(b)

)

∪ Tn(c) ∪ Tn+1(c).

It is easy to check that

µ(Tn(c)) ≤
2

3n
, µ

(

⋃

0≤j<|τ[0,n)|

SjBn+1(b)

)

≤
1

3n

and consequently
∑

µ(An) converges. The Borel–Cantelli lemma again implies that
the sequence (fn)n≥0 converges µ-almost everywhere to some measurable function
f : Xτ → Z/2Z that satisfies f(Sx) = f(x) + 1 (mod 2) for µ-almost every x.
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Denote by (Z3 × Z/2Z,+(1, 1)) the product system of (Z3,+1) and (Z/2Z,+1)
and let ν be the Haar measure on this product. Consider the measurable factor
map F : (Xτ , S, µ)→ (Z3 × Z/2Z,+(1, 1), ν) defined by

F : Xτ → Z3 × Z/2Z

x 7→ (πmeq(x), f(x))

We claim that F defines a measure theoretical isomorphism. Indeed, it is suffi-
cient to prove that the map F is injective on P . If F (x) = F (y) = (z, w) for some
x, y in P , we have that for all large values of n we have both x and y belonging to
SznTn(w), where z = (zn)n≥0. Hence, since τ is proper, the atoms of the sequence
of partitions (Tn)n≥0 generate the topology of (Xτ , S) (see Section 2.6) and we
obtain x = y.

6.6. Example 5. Let A = {1, 2, a, b, c}, s : N → N a nonnegative function such
that 2s(n) + 5 = 3n for n ≥ 0 and consider the directive sequence τ = (τn : A∗ →
A∗)n≥0 such that for all n ≥ 0 the morphism τn : A∗ → A∗ is defined by

1 7→ a(12)s(n)12bc, a 7→ (ab)s(n)ab12c
2 7→ a(12)s(n)21bc, b 7→ a(ab)s(n)b12c

c 7→ (ab)s(n)ab12c.

Observe that τ is a constant length, recognizable and primitive directive sequence
with coincidences. Thus (Xτ , S) is a Toeplitz subshift with maximal equicontinuous
topological factor (Z3,+1).

The composition matrix of the morphism τn for each n ≥ 0 is

Mτn =













s(n) + 1 s(n) + 1 1 1 1
s(n) + 1 s(n) + 1 1 1 1

1 1 s(n) + 1 s(n) + 1 s(n) + 1
1 1 s(n) + 1 s(n) + 1 s(n) + 1
1 1 1 1 1.













The subshift (Xτ , S) has two ergodic measures µa,b and µ1,2. Indeed, since the
rank of each matrix Mτn is two, (Xτ , S) has at most two different ergodic measures.
Moreover, the system is not uniquely ergodic thanks to Theorem 11: a simple yet
tedious computation shows that for any increasing sequence (nk)k≥0 the vectors
(vk)k≥0 satisfy |vk| =

∏

nk<j≤nk+1
(2s(j) + 3) and so

∑

k≥0

|vk|

|τ ′k|
=

1

2s(nk) + 5
< +∞.

where τ ′k = τ ′[nk,nk+1)
, k ≥ 0.

Let Aµa,b
= {a, b} and Aµ1,2 = {1, 2}. Observe that, from the form of the

composition matrix Mτn , for any ergodic measure µ of (Xτ , S) we have

µ(Tn(c))→ 0, µ(Tn(a)) = µ(Tn(b)) and µ(Tn(1)) = µ(Tn(2)).

Thus, without loss of generality, τ is (Aµa,b
)-adapted to µa,b and (Aµ1,2 )-adapted

to µ1,2. We left the details to the reader.
The map πmeq is a measure theoretical isomorphism with respect to µ1,2 whereas

it is not with respect to µa,b as it has −1 as an eigenvalue. Moreover, as in the
previous example, (Xτ , S, µa,b) has discrete spectrum: it is measure theoretically
isomorphic to (Z3 × Z/2Z,+(1, 1), ν) (here ν is the Haar measure on Z3 × Z/2Z).
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We leave it to the reader to verify these statements in the light of the calculations
made earlier.

6.7. Example 6. Above we gave example of Toeplitz subshifts with discrete spec-
trum. There are of course many Toeplitz subshifts that has a non discrete spectrum
such that those with positive entropy. All examples we gave has a finite topological
rank and are thus of entropy zero. It is interesting to give a finite topological rank
Toeplitz shift that does not have a discrete spectrum.

Let A = {1, 2}, s : N→ N a nonnegative function such that 3s(n) + 1 = 52n for
n ≥ 0 and consider the directive sequence τ = (τn : A∗ → A∗)n≥0 such that for all
n ≥ 0 the morphism τn : A∗ → A∗ is defined by

1 7→ (121)s(n)2, 2 7→ 1(121)s(n).

The directive sequence τ is clearly recognizable. Let us show that (Xτ , S) does
not have non continuous eigenvalues. Suppose that λ = exp(2iπα) is such an
eigenvalue. Then, from [BDM10, Proposition 28] one can suppose α = 1/2. But
from [DFM19, Corollary 16] and some computations one can show λ = −1 cannot
be an eigenvalue.

Thus, the maximal equicontinuous measurable factor is (Z5,+1) and it cannot
be measure theoretically isomorphic to (Xτ , S) as (Z5,+1) is coalescent [HP68].
Indeed, otherwise πmeq would be a measure theoretical isomorphism which is not
possible because τ does not fulfill Item 2 of Theorem 2.

6.8. Example 7. We finish this section with the description of a non Toeplitz sub-
shift generated by a constant length directive sequence that has positive topological
entropy and where the conclusion of Theorem 2 holds.

Let (ℓn)n≥0 be a sequence of nonnegative numbers such that

ℓn+1 = (ℓn − 1)! + 1, n ≥ 0.

For n ≥ 0 let An = {an, bn(1), . . . , bn(ℓn − 1)}. The choice of ℓn+1 implies that
there exists a bijection πn between {bn+1(1), . . . , bn+1(ℓn+1 − 1)} and the set of
all words in A∗

n, which can be defined using each letter in {bn(1), . . . , bn(ℓn − 1)}
exactly once. Let π′

n be an onto map between {bn+1(1), . . . , bn+1(ℓn+1 − 1)} and
A2

n. Consider the directive sequence τ = (τn : A∗
n+1 → A

∗
n)n≥0 such that for all

n ≥ 0 the morphism τn : A∗
n+1 → A

∗
n is defined by

τn(bn+1(i)) = πn(bn+1(i))π
′
n(bn+1(i))an, 1 ≤ i < ℓn+1

τn(an+1) = aℓn+1
n bn(1).

The fact that τ is a constant length directive sequence that is primitive, injective
on letters, recognizable and without coincidences is left to the reader. Since every
word in A2

n occurs in the images of τn, it can be checked that the maximal equicon-
tinuous topological factor of (Xτ , S) corresponds to the odometer (Z(|τ[0,n)|)n≥0

,+1).

Thus, since τ does not have coincidences (Xτ , S) is a minimal non Toeplitz subshift.
Stirling’s approximation implies that

log ℓn+1 > (ℓn − 1) log(ℓn − 1)− (ℓn − 1).
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Since ℓk − 1 ≥ 2k for k ≥ 0, inductively we obtain

log ℓn+1

(ℓ0 + 2) . . . (ℓn + 2)
>

n
∏

k=0

(

1−
3

ℓk + 2

)

log(ℓ0 − 1)−
n
∑

k=0

(ℓk − 1) . . . (ℓn − 1)

(ℓ0 + 2) . . . (ℓn + 2)

>

n
∏

k=0

(

1−
3

2k

)

log(ℓ0 − 1)− 2.

From [BH94, Lemma 2.6] the topological entropy of (Xτ , S) is

lim
n→+∞

log |An|

|τ[0,n)|
= lim

n→+∞

log ℓn
(ℓ0 + 2) . . . (ℓn−1 + 2)

> 0

if we choose ℓ0 such that
∏∞

k=0

(

1 − 3
2k

)

log(ℓ0 − 1) > 2. In particular (Xτ , S) is

not of finite topological rank.
Finally if A′

n = {an} for n ≥ 0 then there exists an ergodic measure µ such that
τ is (A′

n)n≥0-adapted to µ. Theorem 2 implies that (Xτ , S, µ) is isomorphic to
(Z(|τ[0,n)|)n≥0

,+1, ν).

References

[ABKK17] M. Adamska, S. Bezuglyi, O. Karpel, and J. Kwiatkowski. Subdiagrams and invari-
ant measures on Bratteli diagrams. Ergodic Theory Dynam. Systems, 37:2417–2452,
2017.

[AD23] Felipe Arbulú and Fabien Durand. Dynamical properties of minimal ferenczi sub-
shifts. Ergodic Theory Dynam. Systems, pages 1–48, 2023.

[BBK06] Veronica Baker, Marcy Barge, and Jaroslaw Kwapisz. Geometric realization and
coincidence for reducible non-unimodular Pisot tiling spaces with an application to
β-shifts. Ann. Inst. Fourier (Grenoble), 56:2213–2248, 2006. Numération, pavages,
substitutions.

[BCBD+21] V. Berthé, P. Cecchi Bernales, F. Durand, J. Leroy, D. Perrin, and S. Petite. On the
dimension group of unimodular S-adic subshifts. Monatshefte für Mathematik, 2021.

[BD02] Marcy Barge and Beverly Diamond. Coincidence for substitutions of Pisot type. Bull.
Soc. Math. France, 130:619–626, 2002.

[BD14] Valérie Berthé and Vincent Delecroix. Beyond substitutive dynamical systems: S-
adic expansions. In Numeration and substitution 2012, RIMS Kôkyûroku Bessatsu,
B46, pages 81–123. Res. Inst. Math. Sci. (RIMS), Kyoto, 2014.

[BDM10] Xavier Bressaud, Fabien Durand, and Alejandro Maass. On the eigenvalues of finite
rank Bratteli-Vershik dynamical systems. Ergodic Theory Dynam. Systems, 30:639–
664, 2010.

[BH94] Mike Boyle and David Handelman. Entropy versus orbit equivalence for minimal
homeomorphisms. Pacific J. Math., 164:1–13, 1994.

[BK06] Marcy Barge and Jaroslaw Kwapisz. Geometric theory of unimodular Pisot substi-
tutions. Amer. J. Math., 128:1219–1282, 2006.

[BKMS13] S. Bezuglyi, J. Kwiatkowski, K. Medynets, and B. Solomyak. Finite rank Bratteli
diagrams: structure of invariant measures. Trans. Amer. Math. Soc., 365:2637–2679,
2013.

[BPR23] Marie-Pierre Béal, Dominique Perrin, and Antonio Restivo. Recognizability of mor-
phisms. Ergodic Theory Dynam. Systems, pages 1–25, 2023.

[BPRS23] Marie-Pierre Béal, Dominique Perrin, Antonio Restivo, and Wolfgang Steiner. Rec-
ognizability in S-adic shifts, 2023.

[BSTY19] Valérie Berthé, Wolfgang Steiner, Jörg M. Thuswaldner, and Reem Yassawi. Rec-
ognizability for sequences of morphisms. Ergodic Theory Dynam. Systems, 39:2896–
2931, 2019.

[CS01] Vincent Canterini and Anne Siegel. Geometric representation of substitutions of Pisot
type. Trans. Amer. Math. Soc., 353:5121–5144, 2001.



THE JACOBS–KEANE THEOREM FROM THE S-ADIC VIEWPOINT 31

[DDMP21] Sebastián Donoso, Fabien Durand, Alejandro Maass, and Samuel Petite. Interplay
between finite topological rank minimal Cantor systems, S-adic subshifts and their
complexity. Trans. Amer. Math. Soc., 374:3453–3489, 2021.

[Dek78] F. M. Dekking. The spectrum of dynamical systems arising from substitutions of
constant length. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 41:221–239, 1978.

[DFM19] Fabien Durand, Alexander Frank, and Alejandro Maass. Eigenvalues of minimal Can-
tor systems. J. Eur. Math. Soc. (JEMS), 21:727–775, 2019.

[DG16] Tomasz Downarowicz and Eli Glasner. Isomorphic extensions and applications. Topol.
Methods Nonlinear Anal., 48:321–338, 2016.

[DK15] Tomasz Downarowicz and Stanisł aw Kasjan. Odometers and Toeplitz systems re-
visited in the context of Sarnak’s conjecture. Studia Math., 229:45–72, 2015.

[DL12] Fabien Durand and Julien Leroy. S-adic conjecture and Bratteli diagrams. C. R.
Math. Acad. Sci. Paris, 350:979–983, 2012.

[Dow05] Tomasz Downarowicz. Survey of odometers and Toeplitz flows. In Algebraic and
topological dynamics, volume 385 of Contemp. Math., pages 7–37. Amer. Math. Soc.,
Providence, RI, 2005.

[DP22] Fabien Durand and Dominique Perrin. Dimension groups and dynamical systems
— Substitutions, Bratteli diagrams and Cantor systems, volume 196 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2022.

[EG60] Robert Ellis and W. H. Gottschalk. Homomorphisms of transformation groups.
Trans. Amer. Math. Soc., 94:258–271, 1960.

[EM22] Bastián Espinoza and Alejandro Maass. On the automorphism group of minimal S-
adic subshifts of finite alphabet rank. Ergodic Theory Dynam. Systems, 42(9):2800–
2822, 2022.

[Esp22] Bastián Espinoza. Symbolic factors of S-adic subshifts of finite alphabet rank. Ergodic
Theory Dynam. Systems, pages 1–37, 2022.

[Esp23] Bastián Espinoza. The structure of low complexity subshifts, 2023.
[Fer96] Sébastien Ferenczi. Rank and symbolic complexity. Ergodic Theory Dynam. Systems,

16:663–682, 1996.
[Fer97] Sébastien Ferenczi. Systems of finite rank. Colloq. Math., 73:35–65, 1997.
[FFT09] Sebastien Ferenczi, Albert M. Fisher, and Marina Talet. Minimality and unique er-

godicity for adic transformations. J. Anal. Math., 109:1–31, 2009.
[Fog02] N. Pytheas Fogg. Substitutions in dynamics, arithmetics and combinatorics, volume

1794 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2002. Edited by V.
Berthé, S. Ferenczi, C. Mauduit and A. Siegel.

[Fur60] Harry Furstenberg. Stationary processes and prediction theory. Annals of Mathemat-
ics Studies, No. 44. Princeton University Press, Princeton, N.J., 1960.

[GJ00] Richard Gjerde and O. Johansen. Bratteli-Vershik models for Cantor minimal sys-
tems: applications to Toeplitz flows. Ergodic Theory Dynam. Systems, 20:1687–1710,
2000.

[GLL22] France Gheeraert, Marie Lejeune, and Julien Leroy. S-adic characterization of mini-
mal ternary dendric shifts. Ergodic Theory Dynam. Systems, 42:3393–3432, 2022.

[GR17] Felipe García-Ramos. Weak forms of topological and measure-theoretical equiconti-
nuity: relationships with discrete spectrum and sequence entropy. Ergodic Theory
Dynam. Systems, 37:1211–1237, 2017.

[GRJY21] Felipe García-Ramos, Tobias Jäger, and Xiangdong Ye. Mean equicontinuity, almost
automorphy and regularity. Israel J. Math., 243:155–183, 2021.

[HLSY21] Wen Huang, Zhengxing Lian, Song Shao, and Xiangdong Ye. Minimal systems with
finitely many ergodic measures. Journal of Functional Analysis, 280:109000, 2021.

[Hos86] B. Host. Valeurs propres des systèmes dynamiques définis par des substitutions de
longueur variable. Ergodic Theory Dynam. Systems, 6:529–540, 1986.

[HP68] Frank Hahn and William Parry. Some characteristic properties of dynamical systems
with quasi-discrete spectra. Math. Systems Theory, 2:179–190, 1968.

[HS03] Michael Hollander and Boris Solomyak. Two-symbol Pisot substitutions have pure
discrete spectrum. Ergodic Theory Dynam. Systems, 23:533–540, 2003.

[JK69] Konrad Jacobs and Michael Keane. 0−1-sequences of Toeplitz type. Z. Wahrschein-
lichkeitstheorie und Verw. Gebiete, 13:123–131, 1969.



32 FELIPE ARBULÚ, FABIEN DURAND, AND BASTIÁN ESPINOZA

[Liv87] A. N. Livshits. On the spectra of adic transformations of Markov compact sets.
Uspekhi Mat. Nauk, 42:189–190, 1987.

[LV92] A. N. Livshits and A. M. Vershik. Adic models of ergodic transformations, spectral
theory, substitutions, and related topics. In Representation theory and dynamical
systems, volume 9 of Adv. Soviet Math., pages 185–204. Amer. Math. Soc., Provi-
dence, RI, 1992.

[Mar75] Nelson G. Markley. Substitution-like minimal sets. Israel J. Math., 22:332–353, 1975.
[Mos92] Brigitte Mossé. Puissances de mots et reconnaissabilité des points fixes d’une substi-

tution. Theoret. Comput. Sci., 99:327–334, 1992.
[Mos96] Brigitte Mossé. Reconnaissabilité des substitutions et complexité des suites automa-

tiques. Bull. Soc. Math. France, 124:329–346, 1996.
[Que87] Martine Queffélec. Substitution dynamical systems — Spectral Analysis, volume 1294

of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1987.
[Sen81] E. Seneta. Nonnegative matrices and Markov chains. Springer Series in Statistics.

Springer-Verlag, New York, second edition, 1981.
[Wil84] Susan Williams. Toeplitz minimal flows which are not uniquely ergodic. Z. Wahrsch.

Verw. Gebiete, 67:95–107, 1984.

Laboratoire Amiénois de Mathématique Fondamentale et Apliquée, CNRS-UMR

7352, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens cedex 1,

France.

Email address: felipe.arbulu@u-picardie.fr

Laboratoire Amiénois de Mathématique Fondamentale et Apliquée, CNRS-UMR

7352, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens cedex 1,

France.

Email address: fabien.durand@u-picardie.fr

Laboratoire Amiénois de Mathématique Fondamentale et Apliquée, CNRS-UMR

7352, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens cedex 1,

France.

Email address: bespinoza@dim.uchile.cl


	1. Introduction
	Acknowledgement
	2. Background
	2.1. Basics in topological dynamics
	2.2. Subshifts
	2.3. Morphisms and substitutions
	2.4. Coincidences of constant length morphisms
	2.5. -adic subshifts
	2.6. Recognizability and dynamical partitions
	2.7. Invariant measures
	2.8. Convergence of frequencies
	2.9. Toeplitz sequences as -adic subshifts
	2.10. The maximal equicontinuous topological factor

	3. About unique ergodicity of -adic subshifts of constant length
	4. Preliminary definitions and results
	5. Proof of the main results
	5.1. Proof of theo:characMEFisregular
	5.2. Proof of theo:characMEFisiso

	6. Examples and applications
	6.1. Dekking's theorem revisited
	6.2. Example 1
	6.3. Example 2
	6.4. Example 3
	6.5. Example 4
	6.6. Example 5
	6.7. Example 6
	6.8. Example 7

	References

