Bayesian uncertainty quantification in pore-scale imaging: how to robustly infer porous media morphological properties through reactive inverse problems ? - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Bayesian uncertainty quantification in pore-scale imaging: how to robustly infer porous media morphological properties through reactive inverse problems ?

Fichier principal
Vignette du fichier
shortAbstractsIAMG2023.pdf (699.06 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt

Dates et versions

hal-04161896 , version 1 (18-07-2024)

Identifiants

  • HAL Id : hal-04161896 , version 1

Citer

Sarah Perez, Philippe Poncet. Bayesian uncertainty quantification in pore-scale imaging: how to robustly infer porous media morphological properties through reactive inverse problems ?. 22st Annual Conference of the International Association for Mathematical Geosciences (IAMG 2023), Aug 2023, Trondheim, Norway. ⟨hal-04161896⟩
21 Consultations
2 Téléchargements

Partager

More