On the exact boundary controllability of semilinear wave equations - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Control and Optimization Année : 2023

On the exact boundary controllability of semilinear wave equations

Résumé

We address the exact boundary controllability of the semilinear wave equation ytt − ∆y + f (y) = 0 posed over a bounded domain Ω of R d. Assuming that f is continuous and satisfies the condition lim sup |r|→∞ |f (r)|/(|r| ln p |r|) β for some β small enough and some p ∈ [0, 3/2), we apply the Schauder fixed point theorem to prove the uniform controllability for initial data in L 2 (Ω) × H −1 (Ω). Then, assuming that f is in C 1 (R) and satisfies the condition lim sup |r|→∞ |f (r)|/ ln p |r| β, we apply the Banach fixed point theorem and exhibit a strongly convergent sequence to a state-control pair for the semilinear equation.
Fichier principal
Vignette du fichier
boundary_control_wave_14juillet.pdf (467.58 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04161730 , version 1 (13-07-2023)

Identifiants

Citer

Sue Claret, Jérôme Lemoine, Arnaud Münch. On the exact boundary controllability of semilinear wave equations. SIAM Journal on Control and Optimization, 2023, 62 (4), pp.1953-1976. ⟨10.1137/23M1586598⟩. ⟨hal-04161730⟩
39 Consultations
39 Téléchargements

Altmetric

Partager

More