Low-Complexity Neural Networks for Denoising Imperfect CSI in Physical Layer Security - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Low-Complexity Neural Networks for Denoising Imperfect CSI in Physical Layer Security

Résumé

Channel adaptation physical layer security (PLS) schemes are degraded when the channel state information (CSI) is imperfect. Imperfect CSI is due to factors such as noisy feedback, outdated CSI, etc. In this paper, we propose a lowcomplexity noisy CSI denoising scheme based on the autoencoder architecture of deep neural networks referred to as DenoiseSec-Net. To further reduce complexity, we then propose a hybrid version (HybDenoiseSecNet) that combines a legacy denoising scheme and a shallow neural network to achieve a similar performance as DenoiseSecNet. Simulation results, in terms of bit error rate (BER), secrecy capacity, and normalized mean squared error (NMSE), show the performance improvement of our proposed scheme compared to conventional denoising schemes. Finally, we study the significant reduction in computational complexity of the proposed scheme compared to another neural network scheme.
Fichier principal
Vignette du fichier
DNN_ChEst final.pdf (434.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04160727 , version 1 (12-07-2023)

Identifiants

  • HAL Id : hal-04160727 , version 1

Citer

Idowu Ajayi, Yahia Medjahdi, Lina Mroueh, Olumide Okubadejo, Fatima Zohra Kaddour. Low-Complexity Neural Networks for Denoising Imperfect CSI in Physical Layer Security. 2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Jun 2023, Goteborg, Sweden. ⟨hal-04160727⟩
36 Consultations
46 Téléchargements

Partager

More