Large dimensional analysis of LS-SVM transfer learning: Application to POLSAR classification - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Large dimensional analysis of LS-SVM transfer learning: Application to POLSAR classification

Résumé

This article analyzes a kernel-based transfer learning method, under a k-class Gaussian mixture model for the input data. Following recent advances in random matrix theory, we propose new insights in transfer learning schemes for challenging cases, when the first-order statistics of all data classes coincide. The article proves the asymptotic normality of the LS-SVM decision function for any smooth kernel function. As a result, an optimization scheme is proposed to minimize the classification error rate. Our theoretical results are corroborated through simulations and then successfully applied to the context of transfer learning for PolSAR image classification.
Fichier principal
Vignette du fichier
DEMR22071.pdf (636.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence
Copyright (Tous droits réservés)

Dates et versions

hal-04159343 , version 1 (11-07-2023)

Licence

Copyright (Tous droits réservés)

Identifiants

Citer

Cyprien Doz, Chengfang Ren, Jean-Philippe Ovarlez, Romain Couillet. Large dimensional analysis of LS-SVM transfer learning: Application to POLSAR classification. IEEE International Conference on Acoustics Speech and Signal Processing, Jun 2023, Rhodes Island, France. ⟨10.1109/ICASSP49357.2023.10096840⟩. ⟨hal-04159343⟩
42 Consultations
47 Téléchargements

Altmetric

Partager

More