Stability of wandering bumps for Hawkes processes interacting on the circle - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2023

Stability of wandering bumps for Hawkes processes interacting on the circle

Zoé Agathe-Nerine
  • Fonction : Auteur
  • PersonId : 1102450

Résumé

We consider a population of Hawkes processes modeling the activity of $N$ interacting neurons. The neurons are regularly positioned on the circle $[-\pi, \pi]$, and the connectivity between neurons is given by a cosine kernel. The firing rate function is a sigmoid. The large population limit admits a locally stable manifold of stationary solutions. The main result of the paper concerns the long-time proximity of the synaptic voltage of the population to this manifold in polynomial times in $N$. We show in particular that the phase of the voltage along this manifold converges towards a Brownian motion on a time scale of order $N$.
Fichier principal
Vignette du fichier
Wandering bumps.pdf (671.4 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04157323 , version 1 (10-07-2023)

Identifiants

Citer

Zoé Agathe-Nerine. Stability of wandering bumps for Hawkes processes interacting on the circle. 2023. ⟨hal-04157323⟩
48 Consultations
19 Téléchargements

Altmetric

Partager

More