The CHiME-7 UDASE task: Unsupervised domain adaptation for conversational speech enhancement
Résumé
Supervised speech enhancement models are trained using artificially generated mixtures of clean speech and noise signals, which may not match real-world recording conditions at test time. This mismatch can lead to poor performance if the test domain significantly differs from the synthetic training domain. In this paper, we introduce the unsupervised domain adaptation for conversational speech enhancement (UDASE) task of the 7th CHiME challenge. This task aims to leverage real-world noisy speech recordings from the target test domain for unsupervised domain adaptation of speech enhancement models. The target test domain corresponds to the multi-speaker reverberant conversational speech recordings of the CHiME-5 dataset, for which the ground-truth clean speech reference is not available. Given a CHiME-5 recording, the task is to estimate the clean, potentially multi-speaker, reverberant speech, removing the additive background noise. We discuss the motivation for the CHiME-7 UDASE task and describe the data, the task, and the baseline system.
Origine | Fichiers produits par l'(les) auteur(s) |
---|