Complexity of Membership and Non-Emptiness Problems in Unbounded Memory Automata - Archive ouverte HAL
Rapport Année : 2023

Complexity of Membership and Non-Emptiness Problems in Unbounded Memory Automata

Résumé

We study the complexity relationship between three models of unbounded memory automata: nu-automata (ν-A), Layered Memory Automata (LaMA)and History-Register Automata (HRA). These are all extensions of finite state automata with unbounded memory over infinite alphabets. We prove that the membership problem is NP-complete for all of them, while they fall into different classes for what concerns non-emptiness. The problem of non-emptiness is known to be Ackermann-complete for HRA, we prove that it is PSPACE-complete for ν-A.
Fichier principal
Vignette du fichier
main.pdf (336.93 Ko) Télécharger le fichier
main.blg (1.17 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04155339 , version 1 (07-07-2023)
hal-04155339 , version 2 (11-07-2023)

Licence

Identifiants

Citer

Clément Bertrand, Cinzia Di Giusto, Hanna Klaudel, Damien Regnault. Complexity of Membership and Non-Emptiness Problems in Unbounded Memory Automata. Université Côte d'Azur, CNRS, I3S, France; IBISC, Univ. Evry, Université Paris-Saclay, France; Scalian Digital Systems, Valbonne, France. 2023. ⟨hal-04155339v2⟩
50 Consultations
62 Téléchargements

Altmetric

Partager

More