MAP-informed Unrolled Algorithms for Hyper-parameter Estimation - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

MAP-informed Unrolled Algorithms for Hyper-parameter Estimation

Pascal Nguyen
Emmanuel Soubies
Caroline Chaux

Résumé

Hyper-parameter tuning, and especially regularisation parameter estimation, is a challenging but essential task when solving inverse problems. The solution is obtained here through the minimization of a functional composed of a data fidelity term and a regularization term. Those terms are balanced through a (or several) regularisation parameter(s) whose estimation is made under an unrolled strategy together with the inverse problem solving. The resulting network is trained while incorporating information on the model through Maximum a Posteriori estimation which drastically decreases the amount of data needed for the training and results in better estimation results. The performances are demonstrated in a deconvolution context where the regularisation is performed in the wavelet domain.
Fichier principal
Vignette du fichier
ICIP_2023_final.pdf (1.25 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04153083 , version 1 (10-07-2023)

Identifiants

Citer

Pascal Nguyen, Emmanuel Soubies, Caroline Chaux. MAP-informed Unrolled Algorithms for Hyper-parameter Estimation. 2023 IEEE International Conference on Image Processing (ICIP), Oct 2023, Kuala Lumpur, Malaysia. pp.2160-2164, ⟨10.1109/ICIP49359.2023.10222154⟩. ⟨hal-04153083⟩
205 Consultations
206 Téléchargements

Altmetric

Partager

More