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ABSTRACT
Hyper-parameter tuning, and especially regularisation parameter es-
timation, is a challenging but essential task when solving inverse
problems. The solution is obtained here through the minimization
of a functional composed of a data fidelity term and a regularization
term. Those terms are balanced through a (or several) regularisation
parameter(s) whose estimation is made under an unrolled strategy
together with the inverse problem solving. The resulting network is
trained while incorporating information on the model through Maxi-
mum a Posteriori estimation which drastically decreases the amount
of data needed for the training and results in better estimation re-
sults. The performances are demonstrated in a deconvolution context
where the regularisation is performed in the wavelet domain.

Index Terms— Maximum a Posteriori, Unrolling, Parameter
estimation, Deconvolution, Wavelets.

1. INTRODUCTION

In this work, we consider the class of inverse problems that consists
in recovering x ∈ RN from data y ∈ RM that follow the linear
model

y = Ax+ ε, (1)

where A ∈ RM×N is the forward matrix and ε ∈ RM a noise
vector whose entries are drawn from a zero-mean normal distribution
with variance σ2. The standard practice to tackle such an inverse
problem [1] is to solve an optimization problem of the form

x̂ ∈
{
arg min

x∈RN
F(x) :=

1

2
∥Ax− y∥22 + λR(x)

}
. (2)

Here, the least-squares term measures the discrepancy between the
model and the data. While other measures of fit could be adopted,
the ℓ2-norm is a natural choice for additive Gaussian noise (see Sec-
tion 2). The regularization term R (assumed convex) enforces prior
knowledge on the targeted solution. Finally, the regularization pa-
rameter λ > 0 allows to adjust the trade-off between data fidelity
and regularization.

The choice of an optimal value for λ is by no means straightfor-
ward and usually practitioners resort to manual tuning. Yet, given
its practical importance, many works have been and continue to be
devoted to the development of methods that select λ automatically.
These include classical approaches such as cross-validation or L-
curve [2], as well as more sophisticated methods like bi-level strate-
gies [3]. Moreover, with the recent rise of neural networks and in-
creasing computational capabilities, several methods based on deep
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learning were proposed [4]. In particular, some of them exploit un-
rolling strategies [5] so as to maintain interpretability.

Contributions and outline. In this communication, we propose a
method to automatically adjust λ from the data y. To that end, we
train—in an end-to-end supervised way—a network that combines a
trainable parameter estimation module together with an unrolled al-
gorithm for (2) (Section 3). As opposed to [5], the proposed param-
eter estimation module derives from a maximum a posteriori (MAP)
interpretation of (2) (Section 2). As such, it remains interpretable
and only few parameters have to be learned.

Although the proposed general principle (sections 2 and 3.1) can
be adapted to any problem of the form (2), we focus in this work on
wavelet-based deconvolution. It corresponds to the situation where

A = HW∗ and R = ∥ · ∥1, (3)

with H ∈ RN×N being a convolution operator and W ∈ RN×N

a wavelet operator. Hence, in this case, x represents wavelets co-
efficients of the target image z = W∗x. Moreover, we present in
Section 3.4 an extension allowing for the consideration of a different
λ for each wavelet sub-band.

We illustrate the effectiveness of the proposed method on image
deconvolution purposes in Section 4. We show that 1) the network
being informed, the proposed strategy enables to automatically esti-
mate the regularisation parameter(s) from a small learning data set
and 2) the reached performances are very close to the best perfor-
mances one can obtain following an (unrealistic) grid search strat-
egy. Indeed, the latter requires a ground truth and is not applicable
in practice but constitutes a good reference for comparison.

2. MAXIMUM A POSTERIORI INTERPRETATION

From a Bayesian perspective, solving an inverse problem of the
from (1) consists in maximizing x 7→ p(x|y), the probability of x
knowing the data y. Although not directly accessible in practice,
Bayes’ formula gives us

p(x|y) ∝ pσ(y|x)pµ(x) (4)

where pσ(y|x) is the likelihood function which only depends on the
noise level σ. For additive Gaussian noise, we have pσ(y|x) ∝
exp

(
−∥Ax− y∥22/(2σ2)

)
which is nothing else than the probabil-

ity of the vector of noise ε. On the other hand, pµ represents the
prior distribution on x. Without loss of generality, we consider log-
concave Gibbs distributions of the form pµ(x) ∝ exp (−R(x)/µ)
where µ > 0 is a scale parameter.

Injecting these expressions in (4) and taking the negative loga-
rithm, we see that maximizing p(x|y) with respect to x is equivalent
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Fig. 1. Top: Typical evolution of the loss function of (2) and the rel-
ative error along with the iterations. Note the importance of attaining
the true convergence regime where the relative error stabilizes. Bot-
tom: Relative error of the solution of (2) as a function of λ. Both
graphs have been obtained with N = 300, A a convolution opera-
tor with a Gaussian kernel, x generated from a zero-mean Laplace
distribution with scale µ, and ε generated from a zero-mean normal
distribution with variance σ2. The left and right graphs correspond
respectively to low and high noise regimes. The red point corre-
sponds to the value λ = σ2/µ.

to solve (2) with
λ = σ2/µ. (5)

As such, we get from this Bayesian viewpoint that the hyper-
parameter λ should be proportional to the noise variance and in-
versely proportional to the scale of the prior distribution. This is
confirmed by Fig. 1 where we illustrate, on synthetic data satisfy-
ing the model perfectly, that the smallest relative error is obtain by
taking λ equal or close to the theoretical value defined in (5). In
Section 3, we exploit this interpretation in order to derive a MAP-
informed unrolled algorithm that allows to automatically adjust λ
from the data y.

3. PROPOSED METHODOLOGY

3.1. General Principle

Let σ̂y and µ̂y be respectively estimates of σ and µ obtained from
the data y (see Section 3.2). Then, one can deploy an iterative opti-
mization algorithm to solve (2) with λ = σ̂2

y/µ̂y. Yet, the success
of this approach depends heavily on the quality of these estimates.
To tackle this drawback, we propose to learn rectification functions
rσ(·;θ) and rµ(·;ϑ) (with learnable parameters θ and ϑ) so that
rσ(σ̂y;θ) and rµ(µ̂y;ϑ) lead to better estimates of σ and µ. Specif-
ically, we consider rectification functions of the form

rσ(s;θ) = θ1s+ θ2 and rµ(u;ϑ) = ϑ1u+ ϑ2. (6)

The rationale behind this choice is discussed in Section 3.2.
We then learn the four parameters defining these rectification

functions through the resolution of

(θ̂, ϑ̂) ∈ arg min
θ,ϑ∈R2

Q∑
q=1

∥N (θ,ϑ;yq
train)− xq

train∥
2
2 (7)

where {xq
train,y

q
train}

Q
q=1 is a set of input-target image-pairs and N

is defined by unrolling an algorithm for (2) (see Section 3.3). More
precisely, we set

N (θ,ϑ;y) = ST (x0, (rσ(σ̂y;θ))
2/rµ(µ̂y;ϑ)) (8)

where ST (x0, λ) stands for T iterations of the considered algorithm
initialized with x0 to solve (2) with the given λ.

By construction, the proposed network can adapt the hyper-
parameter to both the noise level and the image content, as in the
recent work [5]. Yet, as opposed to [5], our parameter estimation
module is interpretable and has significantly less parameters to learn.

3.2. Initial Estimation of σ and µ

Initial estimation of σ. Following [6], we compute an initial esti-
mate of σ as

σ̂y =
1

0.6745
median(|d(Wy)|), (9)

where d is a function that extracts detail coefficients of the wavelet
decomposition. As illustrated in Fig. 2 (top), this estimator is very
accurate in our context where A = HW is a low-pass filter. We
observe that σ̂y detaches from the identity line only for very small
level of noise (σ < 10−5) compared to the signal level µ = 0.01.

Initial estimation of µ. Given that the random vectors Ax and ε
are independent, we have var(y) = var(Ax) + var(ε) where var
stands for the variance. In the Bayesian context of Section 2, setting
R = ∥ · ∥1 corresponds to the consideration of a zero mean Laplace
distribution with scale parameter µ [7]. As such, if A was an identity
operator we would get

var(y) = 2µ2 + σ2, (10)

using the fact that the variance of a zero mean Laplace distribution
with scale parameter µ is 2µ2. Although this relation does not hold
anymore for an arbitrary A, we use it as a rough approximation in
order to compute an initial estimate of µ as

µ̂y =
√

|var(y)− σ̂2
y|/2. (11)

The performance of this estimator is analyzed in the bottom graph of
Fig. 2. We can distinguish two regimes. On the one hand, when the
signal level (i.e. µ) is larger than the noise level (here σ = 0.1), the
estimation is accurate within a constant bias. This is due to the fact
that we ignore the effect of the operator A. This bias motivates the
proposed parameterization for the rectification functions in (6). On
the other hand, when µ is smaller than the noise level, the estimation
becomes constant, equal to a value related to the noise only.

Remark 1. It is noteworthy to mention that we could directly adjust
the parameters of the rectification functions in (6) from the experi-
ments reported in Fig. 2. Yet, the proposed training strategy is more
relevant for several reasons. First, natural images does not follow
exactly the considered model (wavelet coefficients from a Laplace
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Fig. 2. Performance of the estimators (9) (top) and (11) (bottom).
Mean (and standard deviation) of the estimators when N = 1000, A
is a convolution operator with a Gaussian kernel, x is generated from
a zero-mean Laplace distribution with scale µ, and ε is generated
from a zero-mean normal distribution with variance σ2. The closer
the estimation is to the identity line, the better it is.

distribution). Second, as emphasized with the experiment of Fig. 1,
λ = σ2/µ is “optimal” when comparing solutions at convergence.
The later being very slow (problem ill-conditioned), algorithms are
usually stopped way before convergence. In this case, λ = σ2/µ
may not remain the best choice. Hence, the proposed training strat-
egy in Section 3.1 allows to adjust the rectification functions by tak-
ing into account both the deviation of natural images from the con-
sidered model and a reduced number of algorithm iterations.

3.3. Unrolled Fast Iterative Soft Thresholding Algorithm (FISTA)

The resulting optimisation problem (2) is solved by using an un-
rolled [8] version of FISTA algorithm [9]. This algorithm basically
involves two main operations: a gradient step (quadratic term in (2),
stepsize γ) and a thresholding step (regularisation R). In this case,
T iterations of FISTA, denoted by ST (x0, λ) in (8), reads

Algorithm 1 FISTA

1: Input: x0, v0 = x0, λ ≥ 0, 0 < γ < 1/∥A∗A∥
2: Output: xT

3: for t = 0, . . . , T − 1 do
4: xt+1 = Softλγ

(
vt − γA∗(Axt − y)

)
5: vt+1 = xt +

t

t+ 3
(xt+1 − xt)

6: end for

where Softλγ denotes the soft-thresholding operator defined by
Softλγ(x) = sign(x)max(|x| − λγ, 0). This algorithm is imple-
mented under an unrolling strategy that is under a neural network
form where each layer is defined by one iteration of Alg. 1.

3.4. Wavelet Sub-band Variable Parameter

When considering a multiscale representation of signals, choosing
an adaptive regularisation parameter is often more accurate, the in-
formation contained in each sub-band possibly being of a great vari-
ability [10]. We can thus generalize the optimisation problem (2)
with a new one given by

x̂ ∈

arg min
x∈RN

G(x) := 1

2
∥Ax− y∥22 +

∑
j∈Sj

λjR(x|j )

 . (12)

where Sj denotes the jth sub-band of the multiscale transform, and
x|j denotes the coefficients in x associated to this jth sub-band. This
formulation allows us to define (and later tune) a regularisation pa-
rameter λj per sub-band. Only Line 4 of Alg. 1 needs to be modified
with a processing per sub-band.

It is noteworthy to mention that, in this new configuration, a grid
search is no longer possible (in addition to being not realistic as men-
tioned previously) due to the increase of the number of parameters
to tune. In contrast, the proposed MAP-informed unrolled strategy
can be defined as described previously with N (θ, (ϑj)j ;y) where
now a vector ϑj per sub-band will be learnt.

4. NUMERICAL EXPERIMENTS

4.1. Context

We illustrate the performance of our approach in an image decon-
volution context where the direct model is given by (1) in which
A = HW∗ and the noise ε corresponds to an additive white Gaus-
sian noise with variance σ2. H represents a blur operator corre-
sponding to a Gaussian kernel (with σh = 1) and W∗ (resp. W)
defines an orthogonal wavelet synthesis (resp. analysis) operator
(Daubechies wavelet of order 4 on 3 resolution levels).

Our objective is to recover x from y assuming H is known by
solving either Problem (2) (one regularisation parameter) or Problem
(12) (multiple regularisation parameters).

We perform our training and tests on Linnaeus 5 Image database1

where we considered images of size 256× 256 with 256 gray-scale
levels. We consider 50 unrolled iterations of FISTA. To learn the pa-
rameters of our rectification functions, we use 20 epochs of ADAM
optimizer with learning rate 0.01 on 30 images taking into account
2 different levels of noise (two values of σ are randomly chosen
between 1 and 15 for each of the 30 images). As such, a total of 60
images with various noise levels has been considered for training.

We test our procedure on 100 images corrupted by two different
intensities of noise: a low noise level (standard deviation 2) and a
high noise level (standard deviation 10).

4.2. Results

To assess the relevance of the proposed approach, we compare the
performances obtained by an exhaustive grid search and the unrolled
strategies with single and multiple λ (in the trained and untrained
contexts). First, we display the average Signal-To-Noise Ratio
(SNR) performances (over the 100 tested images) for the four un-
rolled strategies in Fig. 4. As expected, we observe that the trained
network always outperforms its untrained counterpart. The multi λ
strategy is always as good as its single counterpart (performances
depend on the considered image).

1http://chaladze.com/l5/
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Fig. 3. Visual performances. Low noise level (top) and high noise level (bottom).

We now concentrate our attention on two images of the test
dataset (represented in Fig. 3 upper and lower left corners) for which
we display the SNR performances along with λ in Fig. 5. Not only
does the trained network always outperforms its untrained counter-
part, but the trained versions (with slightly improved performance
for the multi λ case) reach the maximum performance of the single
λ grid search. Associated visual performance are displayed in Fig. 3.

Fig. 4. Average numerical performances over the dataset. Low
noise level (top) and high noise level (bottom).

5. CONCLUSION

We have proposed in this work a MAP-informed unroll procedure
that allows to adjust automatically the regularisation parameter

Fig. 5. SNR performances along with λ. Low noise level (top) and
high noise level (bottom).

when solving inverse problems in a regularized variational frame-
work. The information provided to the network comes from the
MAP principle at a low cost and enables the training step to be per-
formed on small datasets (small number of parameters to be learnt).
Furthermore, the use of an unrolled neural network allows to keep
the interpretability of the whole process. Finally, it is noteworthy to
mention that this strategy goes beyond the considered Problem (2)
and can be extended to other optimisation problems.
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